Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. 2006

Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea.

Microbial glycosyltransferases can convert many small lipophilic compounds such as phenolics, terpenoids, cyanohydrins and alkaloids into glycons using uridine-diphosphate-activated sugars. The main chemical functions of glycosylation processes are stabilization, detoxification and solubilization of the substrates. The gene encoding the UDP-glycosyltransferase from Bacillus cereus, BcGT-1, was cloned by PCR and sequenced. BcGT-1 was expressed in Escherichia coli BL21 (DE3) with a his-tag and purified using a His-tag affinity column. BcGT-1 could use apigenin, genistein, kaempferol, luteolin, naringenin and quercetin as substrates and gave two reaction products. The enzyme preferentially glycosylated at the 3-hydroxyl group, but it could transfer a glucose group onto the 7-hydroxyl group when the 3-hydroxyl group was not available. The reaction products made by biotransformation of flavonoids with E. coli expressing BcGT-1 are similar to those produced with the purified recombinant enzyme. Thus, this work provides a method that might be useful for the biosynthesis of flavonoid glucosides and for the glycosylation of related compounds.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001409 Bacillus cereus A species of rod-shaped bacteria that is a common soil saprophyte. Its spores are widespread and multiplication has been observed chiefly in foods. Contamination may lead to food poisoning.
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations

Related Publications

Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
March 2007, Journal of microbiology and biotechnology,
Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
April 2009, Journal of microbiology and biotechnology,
Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
March 2008, Journal of medical microbiology,
Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
May 2015, International journal of biological macromolecules,
Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
April 2016, The Journal of biological chemistry,
Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
September 2014, Acta crystallographica. Section F, Structural biology communications,
Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
November 2012, Applied and environmental microbiology,
Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
August 2019, International journal of biological macromolecules,
Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
May 2016, Applied microbiology and biotechnology,
Jae Hyung Ko, and Bong Gyu Kim, and Ahn Joong-Hoon
October 2016, Applied microbiology and biotechnology,
Copied contents to your clipboard!