AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment. 2006

Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.

CHIP proteins are E3 ubiquitin ligases that promote degradation of Hsp70 and Hsp90 substrate proteins through the 26S proteasome in animal systems. A CHIP-like protein in Arabidopsis, AtCHIP, also has E3 ubiquitin ligase activity and has important roles to play under conditions of abiotic stress. In an effort to study the mode of action of AtCHIP in plant cells, proteins that physically interact with it were identified. Like its animal orthologs, AtCHIP interacts with a unique class of ubiquitin-conjugating enzymes (UBC or E2) that belongs to the stress-inducible UBC4/5 class in yeast. AtCHIP also interacts with other proteins, including an A subunit of protein phosphatase 2A (PP2A). This PP2A subunit appears to be a substrate of AtCHIP, because it can be ubiquitylated by AtCHIP in vitro and because the activity of PP2A is increased in AtCHIP-overexpressing plants in the dark or under low-temperature conditions. Unlike the rcn1 mutant, that has reduced PP2A activity due to a mutation in one of the A subunit genes of PP2A, AtCHIP-overexpressing plants are more sensitive to ABA treatment. Since PP2A was previously shown to be involved in low-temperature responses in plants, the low-temperature-sensitive phenotype observed in AtCHIP-overexpressing plants might be partly due to the change in PP2A activity. These data suggest that the E3 ubiquitin ligase AtCHIP may function upstream of PP2A in stress-responsive signal transduction pathways under conditions of low temperature or in the dark.

UI MeSH Term Description Entries
D007210 Indoleacetic Acids Acetic acid derivatives of the heterocyclic compound indole. (Merck Index, 11th ed) Auxin,Auxins,Indolylacetic Acids,Acids, Indoleacetic,Acids, Indolylacetic
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D000040 Abscisic Acid Abscission-accelerating plant growth substance isolated from young cotton fruit, leaves of sycamore, birch, and other plants, and from potatoes, lemons, avocados, and other fruits. 2,4-Pentadienoic acid, 5-(1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-3-methyl-, (S-(Z,E))-,Abscisic Acid Monoammonium Salt, (R)-Isomer,Abscisic Acid, (+,-)-Isomer,Abscisic Acid, (E,E)-(+-)-Isomer,Abscisic Acid, (E,Z)-(+,-)-Isomer,Abscisic Acid, (R)-Isomer,Abscisic Acid, (Z,E)-Isomer,Abscissic Acid,Abscissins
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D044767 Ubiquitin-Protein Ligases A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes. Ubiquitin-Protein Ligase,E3 Ligase,E3 Ubiquitin Ligase,Ubiquitin Ligase E3,Ubiquitin-Protein Ligase E3,Ligase E3, Ubiquitin,Ligase E3, Ubiquitin-Protein,Ligase, E3,Ligase, E3 Ubiquitin,Ligase, Ubiquitin-Protein,Ligases, Ubiquitin-Protein,Ubiquitin Ligase, E3,Ubiquitin Protein Ligase,Ubiquitin Protein Ligase E3,Ubiquitin Protein Ligases
D054648 Protein Phosphatase 2 A phosphoprotein phosphatase subtype that is comprised of a catalytic subunit and two different regulatory subunits. At least two genes encode isoforms of the protein phosphatase catalytic subunit, while several isoforms of regulatory subunits exist due to the presence of multiple genes and the alternative splicing of their mRNAs. Protein phosphatase 2 acts on a broad variety of cellular proteins and may play a role as a regulator of intracellular signaling processes. PPP2CA Phosphatase,PPP2CB Phosphatase,Protein Phosphatase 2, Catalytic Subunit,Protein Phosphatase 2, Catalytic Subunit, alpha Isoform,Protein Phosphatase 2, Catalytic Subunit, beta Isoform,Protein Phosphatase 2, Regulatory Subunit,Protein Phosphatase 2, Regulatory Subunit A, alpha Isoform,Protein Phosphatase 2, Regulatory Subunit A, beta Isoform,Protein Phosphatase 2, Regulatory Subunit B, alpha Isoform,Protein Phosphatase 2, Regulatory Subunit B, beta Isoform,Protein Phosphatase 2, Regulatory Subunit B, delta Isoform,Protein Phosphatase 2, Regulatory Subunit B, gamma Isoform,Protein Phosphatase 2A, Catalytic Subunit, alpha Isoform,Protein Phosphatase 2A, Catalytic Subunit, beta Isoform,Protein Phosphatase 2A, Regulatory Subunit A , alpha Isoform,Protein Phosphatase 2A, Regulatory Subunit A, beta Isoform,Protein Phosphatase 2A, Regulatory Subunit B, alpha Isoform,Protein Phosphatase 2A, Regulatory Subunit B, beta Isoform,Protein Phosphatase 2A, Regulatory Subunit B, delta Isoform,Protein Phosphatase 2A, Regulatory Subunit B, gamma Isoform,Protein Phosphatase-2A,Serine Threonine Protein Phosphatase 2A Catalytic Subunit beta Isoform,Serine-Threonine-Protein Phosphatase 2A Catalytic Subunit alpha Isoform,Phosphatase, PPP2CA,Phosphatase, PPP2CB,Protein Phosphatase 2A,Serine Threonine Protein Phosphatase 2A Catalytic Subunit alpha Isoform

Related Publications

Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
January 2016, Frontiers in plant science,
Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
January 2021, Frontiers in plant science,
Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
January 2004, The Journal of experimental medicine,
Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
January 2020, Cancer management and research,
Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
February 2006, The Journal of biological chemistry,
Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
January 2014, PloS one,
Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
August 2015, Nature communications,
Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
June 2011, Sheng li ke xue jin zhan [Progress in physiology],
Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
September 2008, Biochemical and biophysical research communications,
Jinhua Luo, and Guoxin Shen, and Juqiang Yan, and Cixin He, and Hong Zhang
October 2001, Current biology : CB,
Copied contents to your clipboard!