Rapid and sensitive real-time polymerase chain reaction method for detection and quantification of 3243A>G mitochondrial point mutation. 2006

Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
Institute of Biomedical Sciences, Peninsula Medical School, Exeter, EX2 5DW UK.

Maternally inherited diabetes and deafness and mitochondrial encephalomyopathy, lactic acidosis with stroke-like episodes result from the 3243A>G mitochondrial point mutation. Current methods to detect the presence of the mutation have limited sensitivity and may lead to potential misclassification of patients with low levels of heteroplasmy. Here, we describe development and validation of a rapid real-time polymerase chain reaction (PCR) method for detection and quantification of levels of heteroplasmy in a single assay. Standard curve analysis indicated that the sensitivity of detection was less than 0.1%. Time from sample loading to data analysis was 110 minutes. We tested 293 samples including 23 known positives, 40 known negatives, and 230 samples from patients clinically classified as having type 2 diabetes. All positive samples were correctly detected, and of those samples previously quantified, heteroplasmy levels determined using the real-time assay correlated well (r(2) = 0.88 and 0.93) with results from fluorescently labeled PCR-restriction fragment length polymorphism and pyrosequencing methods. Screening of 230 patients classified as having type 2 diabetes revealed one patient with 0.6% heteroplasmy who had previously tested negative by PCR-restriction fragment length polymorphism. Real-time PCR provides rapid simultaneous detection and quantification of the 3243A>G mutation to a detection limit of less than 0.1%, without post-PCR manipulation.

UI MeSH Term Description Entries
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D006151 Guanosine A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed)
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D017354 Point Mutation A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair. Mutation, Point,Mutations, Point,Point Mutations

Related Publications

Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
January 2006, Methods in molecular biology (Clifton, N.J.),
Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
December 2006, Molecular vision,
Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
January 2008, Marine biotechnology (New York, N.Y.),
Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
October 2018, HLA,
Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
June 2009, Diagnostic microbiology and infectious disease,
Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
June 2016, Memorias do Instituto Oswaldo Cruz,
Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
September 2005, Journal of periodontology,
Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
June 2000, Analytical biochemistry,
Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
March 2024, Laboratory medicine,
Rinki Singh, and Sian Ellard, and Andrew Hattersley, and Lorna W Harries
July 2010, The Journal of molecular diagnostics : JMD,
Copied contents to your clipboard!