Bradykinin-induced burst of prostaglandin formation in osteoblasts is mediated via B2 bradykinin receptors. 1991

O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
Department of Oral Pathology, University of UmeƄ, Sweden.

The receptor subtype mediating the bradykinin (Bk)-induced burst of prostaglandin formation in osteoblasts has been studied. Bk, but not des-Arg9-Bk, induced the formation of prostaglandin E2 and prostacyclin in neonatal mouse calvarial bones incubated for 30 minutes. Bk-induced prostaglandin synthesis is neonatal mouse calvarial bones was significantly inhibited by the B2 Bk receptor antagonist D-Arg0[Hyp3,Thi5,8,D-Phe7]-Bk. The B2 Bk receptor agonists Bk and Lys-Bk, but not the B1 Bk receptor agonist des-Arg9-Bk, caused a rapid burst (5 minutes) of prostaglandin E2 and prostacyclin formation in isolated osteoblast-like cells from neonatal mouse calvarial bones and in the murine osteoblastic cell lineage MC3T3-E1. When comparing the relative potency of different kinin analogs on their stimulatory effect on prostaglandin formation in isolated osteoblast-like cells and in MC3T3-E1 cells, we found that Bk = Lys-Bk greater than Met-lys-Bk much much greater than Des-Arg9-Bk. Bk-induced prostaglandin synthesis in isolated osteoblast-like cells and in MC3T3-E1 cells was inhibited by D-Arg0[Hyp3,Thi5,8,D-Phe7]-Bk, whereas the B1 Bk receptor antagonist des-Arg9-Leu8-Bk had no effect. Total binding of 3H-Bk (3-20 nM; 4 degrees C) to whole MC3T3-E1 cells reached a maximum after 4-5 h. An excess of nonradioactive Bk (1 microM) reduced cell-associated radioactivity by 20-30%. The B2 Bk receptor agonist Bk and the B2 Bk receptor antagonist D-Arg0[Hyp3,Thi5,8,D-Phe7]-Bk were able to reduce specific binding, but the B1 Bk receptor agonist des-Arg9-Bk was unable to reduce the specific binding of 3H-Bk to whole MC3T3-E1 cells. These findings indicate the presence of B2 Bk receptors on osteoblasts coupled to enhanced prostaglandin synthesis.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D017981 Receptors, Neurotransmitter Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses. Neurohumor Receptors,Neuromediator Receptors,Neuromodulator Receptors,Neuroregulator Receptors,Receptors, Neurohumor,Receptors, Synaptic,Synaptic Receptor,Synaptic Receptors,Neuromediator Receptor,Neuromodulator Receptor,Neuroregulator Receptor,Neurotransmitter Receptor,Receptors, Neuromediators,Receptors, Neuromodulators,Receptors, Neuroregulators,Receptors, Neurotransmitters,Neuromediators Receptors,Neuromodulators Receptors,Neuroregulators Receptors,Neurotransmitter Receptors,Neurotransmitters Receptors,Receptor, Neuromediator,Receptor, Neuromodulator,Receptor, Neuroregulator,Receptor, Neurotransmitter,Receptor, Synaptic,Receptors, Neuromediator,Receptors, Neuromodulator,Receptors, Neuroregulator

Related Publications

O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
January 1993, European journal of pharmacology,
O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
March 1993, The American journal of physiology,
O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
February 1994, The American journal of physiology,
O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
January 1996, Pflugers Archiv : European journal of physiology,
O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
November 1990, The American review of respiratory disease,
O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
July 1991, The American review of respiratory disease,
O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
August 1982, Cell,
O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
October 1990, British journal of pharmacology,
O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
May 1995, American journal of respiratory and critical care medicine,
O Ljunggren, and R Vavrek, and J M Stewart, and U H Lerner
April 1989, Trends in pharmacological sciences,
Copied contents to your clipboard!