Adenosine-dependent regulation of cyclic AMP accumulation in primary cultures of rat astrocytes and neurons. 1991

M G Murphy, and C M Moak, and Z Byczko, and W F MacDonald
Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.

The regulation of intracellular cyclic AMP (cAMP) formation by adenosine (Ado) and its analogues has been examined in primary cultures of rat-brain astrocytes and neurons. In the presence of the phosphodiesterase inhibitor, Ro 20-1724, basal levels of cAMP ranged from 40-120 pmol/mg protein in both cell types. Levels were not altered by treating the cells with Ado deaminase, which suggested that they did not produce appreciable amounts of endogenous Ado under standard culture conditions. In the astrocytes, microM quantities of agonists increased cAMP up to 30-fold higher than basal values; the relative potencies were typical of an A2 Ado receptor (NECA greater than Ado greater than R-PIA). Neuron-enriched cultures exhibited a maximum fourfold increase in cAMP in response to NECA; this was decreased a further eightfold when the cultures had prolonged exposure to the antimitotic agent, c-Ara, to eliminate greater than 98% of the nonneuronal cells. Low (nM) amounts of the Ado agonists inhibited cAMP formation in both cell types. In the astrocytes, the order of potency of inhibition of isoproterenol-stimulated cAMP formation was typical of an A1 receptor (R-PIA greater than Ado greater than NECA); maximum inhibition was 55-65%. Isoproterenol did not increase cAMP in the neuronal cultures. However, forskolin-stimulated formation was effectively (approximately 50%) inhibited by A1 Ado agonists; inhibition was not affected by prolonged treatment with c-Ara. From this study we tentatively concluded that rat astrocytes and neurons both contain inhibitory A1 Ado receptors, but that the stimulatory "A2" subtype is localized mainly on astrocytes.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M G Murphy, and C M Moak, and Z Byczko, and W F MacDonald
January 1994, British journal of pharmacology,
M G Murphy, and C M Moak, and Z Byczko, and W F MacDonald
October 1980, Proceedings of the National Academy of Sciences of the United States of America,
M G Murphy, and C M Moak, and Z Byczko, and W F MacDonald
October 1989, Journal of neuroscience research,
M G Murphy, and C M Moak, and Z Byczko, and W F MacDonald
September 1987, The Journal of biological chemistry,
M G Murphy, and C M Moak, and Z Byczko, and W F MacDonald
September 1989, Journal of neurochemistry,
M G Murphy, and C M Moak, and Z Byczko, and W F MacDonald
June 1990, Neurochemical research,
M G Murphy, and C M Moak, and Z Byczko, and W F MacDonald
November 1986, Neurochemical research,
M G Murphy, and C M Moak, and Z Byczko, and W F MacDonald
June 1996, European journal of pharmacology,
Copied contents to your clipboard!