Hyaluronan interactions with hydroxyapatite do not alter in vitro hydroxyapatite crystal proliferation and growth. 1991

A L Boskey, and B L Dick
Department of Ultrastructural Biochemistry, Hospital for Special Surgery, New York, NY 10021.

The interaction of hyaluronan (Mr range 80-120 x 10(4)) with poorly crystalline hydroxyapatite, such as is found in calcified cartilage and bone, was studied to challenge the hypothesis that free hyaluronan found in proteoglycan aggregate preparations could affect in vitro mineralization. Using a Langmuir adsorption isotherm, based on uronic acid content, hyaluronan was found to bind to hydroxyapatite with an affinity K of 0.12 ml/microgram uronate and N = 6.8 micrograms uronate/m2 hydroxyapatite binding sites. This is contrasted with K = .047 ml/microgram uronate and N = 9.0 micrograms uronate/m2 for a bovine nasal proteoglycan monomer preparation. Although the proteoglycan monomer and aggregate preparations have been reported to inhibit hydroxyapatite growth at concentrations of 1 mg/ml, using solution concentrations of 0, 0.01, 0.1 and 1 mg/ml hyaluronan there were no detectable alterations in the rate of seeded hydroxyapatite growth and proliferation. These data indicate that although in vitro hyaluronan may bind with weak affinity to hydroxyapatite, this interaction does not affect mineral growth, and the presence of hyaluronan would not contribute to the increased inhibitory potential of cartilage proteoglycan aggregate relative to monomer preparations.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D006820 Hyaluronic Acid A natural high-viscosity mucopolysaccharide with alternating beta (1-3) glucuronide and beta (1-4) glucosaminidic bonds. It is found in the UMBILICAL CORD, in VITREOUS BODY and in SYNOVIAL FLUID. A high urinary level is found in PROGERIA. Amo Vitrax,Amvisc,Biolon,Etamucine,Healon,Hyaluronan,Hyaluronate Sodium,Hyvisc,Luronit,Sodium Hyaluronate,Acid, Hyaluronic,Hyaluronate, Sodium,Vitrax, Amo
D006882 Hydroxyapatites A group of compounds with the general formula M10(PO4)6(OH)2, where M is barium, strontium, or calcium. The compounds are the principal mineral in phosphorite deposits, biological tissue, human bones, and teeth. They are also used as an anticaking agent and polymer catalysts. (Grant & Hackh's Chemical Dictionary, 5th ed) Hydroxyapatite Derivatives,Derivatives, Hydroxyapatite
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions
D017886 Durapatite The mineral component of bones and teeth; it has been used therapeutically as a prosthetic aid and in the prevention and treatment of osteoporosis. Calcium Hydroxyapatite,Hydroxyapatite,Hydroxylapatite,Alveograf,Calcitite,Interpore-200,Interpore-500,Osprovit,Ossein-Hydroxyapatite Compound,Ossopan,Osteogen,Periograf,Hydroxyapatite, Calcium,Interpore 200,Interpore 500,Interpore200,Interpore500,Ossein Hydroxyapatite Compound

Related Publications

A L Boskey, and B L Dick
July 2008, Metabolism: clinical and experimental,
A L Boskey, and B L Dick
April 2010, Acta biomaterialia,
A L Boskey, and B L Dick
October 1993, Biochimica et biophysica acta,
A L Boskey, and B L Dick
March 2005, Metabolism: clinical and experimental,
A L Boskey, and B L Dick
June 2023, BMC neuroscience,
Copied contents to your clipboard!