Neuropeptide-stimulated cell migration in prostate cancer cells is mediated by RhoA kinase signaling and inhibited by neutral endopeptidase. 2006

R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
Department of Urology, Urologic Oncology Research Laboratory, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.

The neuropeptides bombesin and endothelin-1 stimulate prostate cancer (PC) cell migration and invasion (J Clin Invest, 2000; 106: 1399-1407). The intracellular signaling pathways that direct this cell movement are not well delineated. The monomeric GTPase RhoA is required for migration in several cell types including neutrophils, monocytes and fibroblasts. We demonstrate that bombesin-stimulated PC cell migration occurs via the heterotrimeric G-protein-coupled receptors (G-protein) G alpha 13 subunit leading to activation of RhoA, and Rho-associated coiled-coil forming protein kinase (ROCK). Using siRNA to suppress expression of the three known G-protein alpha-subunit-associated RhoA guanine nucleotide exchange factors (GEFs), we also show that two of these RhoA GEFs, PDZ-RhoGEF and leukemia-associated RhoGEF (LARG), link bombesin receptors to RhoA in a non-redundant manner in PC cells. We next show that focal adhesion kinase, which activates PDZ-RhoGEF and LARG, is required for bombesin-stimulated RhoA activation. Neutral endopeptidase (NEP) is expressed on normal prostate epithelium whereas loss of NEP expression contributes to PC progression. We also demonstrate that NEP inhibits neuropeptide activation of RhoA. Together, these results establish a contiguous signaling pathway from the bombesin receptor to ROCK in PC cells, and they implicate NEP as a major regulator of neuropeptide-stimulated RhoA in these cells. This work also identifies members of this signaling pathway as potential targets for rational pharmacologic manipulation of neuropeptide-stimulated migration of PC cells.

UI MeSH Term Description Entries
D008297 Male Males
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D001839 Bombesin A tetradecapeptide originally obtained from the skins of toads Bombina bombina and B. variegata. It is also an endogenous neurotransmitter in many animals including mammals. Bombesin affects vascular and other smooth muscle, gastric secretion, and renal circulation and function. Bombesin 14,Bombesin Dihydrochloride,Dihydrochloride, Bombesin
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015260 Neprilysin Enzyme that is a major constituent of kidney brush-border membranes and is also present to a lesser degree in the brain and other tissues. It preferentially catalyzes cleavage at the amino group of hydrophobic residues of the B-chain of insulin as well as opioid peptides and other biologically active peptides. The enzyme is inhibited primarily by EDTA, phosphoramidon, and thiorphan and is reactivated by zinc. Neprilysin is identical to common acute lymphoblastic leukemia antigen (CALLA Antigen), an important marker in the diagnosis of human acute lymphocytic leukemia. There is no relationship with CALLA PLANT. Antigens, CD10,Antigens, Leukemia, Common Acute Lymphoblastic,CALLA Antigen,CD10 Antigens,Common Acute Lymphoblastic Leukemia Antigens,Endopeptidase-24.11,Enkephalin Dipeptidyl Carboxypeptidase,Enkephalinase,Kidney-Brush-Border Neutral Proteinase,Membrane Metallo-Endopeptidase,Atriopeptidase,CD10 Antigen,Enkephalinase-24.11,Neutral Endopeptidase,Neutral Endopeptidase 24.11,Thermolysin-Like Metalloendopeptidase,YGG-Forming Enzyme,Antigen, CD10,Carboxypeptidase, Enkephalin Dipeptidyl,Dipeptidyl Carboxypeptidase, Enkephalin,Endopeptidase 24.11,Endopeptidase 24.11, Neutral,Endopeptidase, Neutral,Enkephalinase 24.11,Enzyme, YGG-Forming,Kidney Brush Border Neutral Proteinase,Membrane Metallo Endopeptidase,Metallo-Endopeptidase, Membrane,Metalloendopeptidase, Thermolysin-Like,Neutral Proteinase, Kidney-Brush-Border,Thermolysin Like Metalloendopeptidase,YGG Forming Enzyme
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
December 2000, The Journal of clinical investigation,
R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
January 2007, Clinical & experimental metastasis,
R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
December 2000, Cancer research,
R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
January 2008, Prostate cancer and prostatic diseases,
R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
February 2010, European journal of pharmacology,
R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
May 2000, Endocrinology,
R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
November 2005, Experimental biology and medicine (Maywood, N.J.),
R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
December 2011, Oncotarget,
R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
September 2014, Molecular pharmacology,
R Zheng, and A Iwase, and R Shen, and O B Goodman, and N Sugimoto, and Y Takuwa, and D J Lerner, and D M Nanus
December 2006, Cancer,
Copied contents to your clipboard!