Regulation of the urokinase receptor by its plasminogen activator. 1991

W Hollas, and D Boyd
Department of Tumor Biology, M. D. Anderson Cancer Center, Houston, TX 77030.

There is now ample evidence that the proteolytic action of urokinase (UK) is potentiated by a specific cell surface receptor. The present study was undertaken to assess the role of UK as a modulator of its receptor. GEO colonic cells, which secrete relatively low levels of UK (congruent to 0.1 nM/72 h per 10(6) cells) and display approximately 10(4) receptors per cell, 10% of which are "tagged" with the endogenous plasminogen activator (PA), was selected for the study. A 90% reduction in the specific binding of radioactive DFP-UK was observed for cells cultivated in the presence of two-chain (TC) UK (Mr 55,000). This only partly reflected occupation of the receptors with UK supplied in the culture medium, since the specific binding of the radioligand was still reduced by 60% after an acid pretreatment, which dissociates receptor-bound UK. The reduction in radioactive DFP-UK binding to cells treated with high molecular weight UK, either in the single or two-chain form, was both concentration and time dependent. Maximum reductions (70%) were achieved by treatment of the cells for 24 h with 1 nM of the plasminogen activator. In contrast, low molecular weight UK, which lacks part of the UK A chain, had no effect on ligand binding. Attenuation of radioactive DFP-UK binding to UK treated GEO cells was a consequence of a 60% reduction in the number of binding sites. Treatment of GEO cells with an antibody, which blocks the binding of endogenous UK to its receptor, augmented radioactive DFP-UK binding by two-fold. These data indicate that for one colonic cell line, at least, UK down-regulates its own binding site subsequent to it being bound to the receptor.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010960 Plasminogen Activators A heterogeneous group of proteolytic enzymes that convert PLASMINOGEN to FIBRINOLYSIN. They are concentrated in the lysosomes of most cells and in the vascular endothelium, particularly in the vessels of the microcirculation. Extrinsic Plasminogen Activators,Plasminogen Activator,Uterine-Tissue Plasminogen Activator,Uterine Tissue Plasminogen Activator
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014568 Urokinase-Type Plasminogen Activator A proteolytic enzyme that converts PLASMINOGEN to FIBRINOLYSIN where the preferential cleavage is between ARGININE and VALINE. It was isolated originally from human URINE, but is found in most tissues of most VERTEBRATES. Plasminogen Activator, Urokinase-Type,U-Plasminogen Activator,Urinary Plasminogen Activator,Urokinase,Abbokinase,Kidney Plasminogen Activator,Renokinase,Single-Chain Urokinase-Type Plasminogen Activator,U-PA,Single Chain Urokinase Type Plasminogen Activator,U Plasminogen Activator,Urokinase Type Plasminogen Activator
D055293 Receptors, Urokinase Plasminogen Activator An extracellular receptor specific for UROKINASE-TYPE PLASMINOGEN ACTIVATOR. It is attached to the cell membrane via a GLYCOSYLPHOSPHATIDYLINOSITOL LINKAGE and plays a role in the co-localization of urokinase-type plasminogen activator with PLASMINOGEN. Antigens, CD87,Urokinase Plasminogen Activator Receptor,Urokinase Type Plasminogen Activator Receptor,Urokinase-Type Plasminogen Activator Receptor,CD87 Antigen,Plasminogen Activator Receptor, Urokinase Type,Plasminogen Activator, Urokinase Receptor,Plasminogen Activator, Urokinase Receptors,Receptor, Pro-Urokinase,Receptor, Urokinase Plasminogen Activator,U-PA Receptor,Upar Receptor,Urokinase Plasminogen Activator Receptors,Urokinase-Type Plasminogen Activator Receptors,Antigen, CD87,CD87 Antigens,Pro-Urokinase Receptor,Receptor, Pro Urokinase,Receptor, U-PA,Receptor, Upar,U PA Receptor,Urokinase Type Plasminogen Activator Receptors

Related Publications

W Hollas, and D Boyd
May 1995, International journal of cancer,
W Hollas, and D Boyd
January 1986, Journal of cellular biochemistry,
W Hollas, and D Boyd
July 2002, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis,
W Hollas, and D Boyd
January 2001, Methods in enzymology,
W Hollas, and D Boyd
May 1997, Journal of the National Cancer Institute,
W Hollas, and D Boyd
June 1990, The Journal of biological chemistry,
Copied contents to your clipboard!