Extragenic suppressors of a translation initiation defect in the cyc1 gene of Saccharomyces cerevisiae. 1991

M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130.

The cycl-362 allele contains a point mutation that generates an aberrant AUG codon upstream of the normal CYC1 translation initiation codon. Mutants containing this allele express only about 2% of normal iso-1-cytochrome c, presumably due to translation initiation at the upstream AUG, termination at a UAA sequence six codons downstream, and failure to reinitiate at the normal AUG codon two nucleotides later. Both intragenic and extragenic revertants of cycl-362, expressing elevated levels of iso-1-cytochrome c, have been isolated simply by selecting for growth on lactate medium. Here we describe an improved method for isolating and readily distinguishing cis- from trans-acting suppressors of the upstream AUG. Eight different genes, designated sua1-sua8, are represented in our current collection of extragenic suppressors; all are recessive and enhance iso-1-cytochrome c levels to 10-60% of normal. None of the sua genes is allelic to SUI2 or sui3, which encode eIF-2 alpha and eIF-2 beta, respectively, or to SUI1. Many of the suppressors exhibit pleiotropic phenotypes, including slow growth, cold (16 degrees C) and heat (37 degrees C) sensitivity. These phenotypes have been exploited to clone the SUA5, SUA7 and SUA8 genes, which are presently being characterized. The structure of cyc1-362 and the number of sua genes already uncovered suggest that the SUA genes are likely to encode factors affecting several different cellular processes, including translation initiation, mRNA stability and possibly transcription start site selection.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
January 2000, Acta biochimica Polonica,
M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
June 1990, Genetics,
M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
February 1994, Current genetics,
M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
February 1995, Molecular and cellular biology,
M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
March 1994, Genetics,
M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
August 1996, Proceedings of the National Academy of Sciences of the United States of America,
M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
June 1992, Molecular microbiology,
M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
February 2004, Molecular cell,
M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
June 1992, Genetics,
M Hampsey, and J G Na, and I Pinto, and D E Ware, and R W Berroteran
May 1993, Genetics,
Copied contents to your clipboard!