Regulation and function of tailless in the long germ wasp Nasonia vitripennis. 2006

Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
Center for Developmental genetics, Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA.

In the long germ insect Drosophila, the gene tailless acts to pattern the terminal regions of the embryo. Loss of function of this gene results in the deletion of the anterior and posterior terminal structures and the eighth abdominal segment. Drosophila tailless is activated by the maternal terminal system through Torso signaling at both poles of the embryo, with additional activation by Bicoid at the anterior. Here, we describe the expression and function of tailless in a long germ Hymenoptera, the wasp Nasonia vitripennis. Despite the morphological similarities in the mode of development of these two insects, we find major differences in the regulation and function of tailless between Nasonia and Drosophila. In contrast to the fly, Nasonia tll appears to rely on otd for its activation at both poles. In addition, the anterior domain of Nasonia tll appears to have little or no segmental patterning function, while the posterior tll domain has a much more extensive patterning role than its Drosophila counterpart.

UI MeSH Term Description Entries
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014863 Wasps Any of numerous winged hymenopterous insects of social as well as solitary habits and having formidable stings. Hornets,Yellow Jackets,Hornet,Jacket, Yellow,Jackets, Yellow,Wasp,Yellow Jacket
D018160 Receptors, Cytoplasmic and Nuclear Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS. Cytoplasmic Receptor,Cytoplasmic and Nuclear Receptors,Cytosolic and Nuclear Receptors,Hormone Receptors, Cytoplasmic,Hormone Receptors, Nuclear,Nuclear Hormone Receptor,Nuclear Receptor,Nuclear and Cytoplasmic Receptors,Cytoplasmic Hormone Receptors,Cytoplasmic Receptors,Cytosol and Nuclear Receptors,Intracellular Membrane Receptors,Nuclear Hormone Receptors,Nuclear Receptors,Receptors, Cytoplasmic,Receptors, Cytosol and Nuclear,Receptors, Cytosolic and Nuclear,Receptors, Intracellular Membrane,Receptors, Nuclear,Receptors, Nuclear and Cytoplasmic,Hormone Receptor, Nuclear,Membrane Receptors, Intracellular,Receptor, Cytoplasmic,Receptor, Nuclear,Receptor, Nuclear Hormone,Receptors, Cytoplasmic Hormone,Receptors, Nuclear Hormone
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D019521 Body Patterning The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc. Axial Patterning (Embryology),Embryonic Pattern Formation,Polarity of Development,Body Pattern Formation,Body Pattern Specification,Embryonic Pattern Specification,Development Polarity,Embryonic Pattern Formations,Formation, Embryonic Pattern,Pattern Formation, Body,Pattern Formation, Embryonic,Pattern Specification, Body,Pattern Specification, Embryonic,Patterning, Axial (Embryology),Patterning, Body,Specification, Body Pattern,Specification, Embryonic Pattern

Related Publications

Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
January 2007, Science (New York, N.Y.),
Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
April 2015, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
October 2009, Cold Spring Harbor protocols,
Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
March 2007, Genetics,
Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
October 2015, G3 (Bethesda, Md.),
Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
July 2020, BMC genomics,
Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
August 2019, Scientific reports,
Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
September 2013, Developmental biology,
Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
February 1982, Science (New York, N.Y.),
Jeremy A Lynch, and Eugenia C Olesnicky, and Claude Desplan
May 2024, G3 (Bethesda, Md.),
Copied contents to your clipboard!