A novel mechanism of regulatory T cell-mediated down-regulation of autoimmunity. 2006

Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada.

We have established a novel CD4 and CD8 double-positive CD25+ T regulatory (Treg) clone, MT-5B, from lymph nodes of type 1 diabetes prone non-obese diabetic (NOD) mice immunized with CFA. CFA has previously been shown to prevent the onset of diabetes by inducing Treg cells. In vitro, clone MT-5B was anergic to a panel of antigen stimulations and exerted an immunosuppressive effect in antigen-non-specific and cell contact-independent manners. In vivo, clone MT-5B blocked the adoptive transfer of diabetes. Proteomics and immunoadsorption studies identified the suppressive proteins secreted by clone MT-5B as granzyme B (GrB) and perforin (PFN). GrB-mediated immune suppression was PFN dependent. Removal of GrB or PFN from the culture supernatant (SN) of MT-5B cells or pre-incubation of MT-5B cells with ethyleneglycol-bis(aminoethylether)-tetraacetic acid which blocks PFN activity reduced the immunosuppressive effect in vitro. Pre-incubation of diabetogenic splenocytes from NOD mice with MT-5B SN impaired their ability to transfer disease by inducing T cell apoptosis, and removal of GrB from MT-5B SN by immunoadsorption decreased the effector function of MT-5B SN on diabetogenic splenocytes. Immunization of NOD mice with CFA increased the expression of GrB+ CD4 T cells, indicating that these cells are present in vivo. In conclusion, we describe a novel mechanism of cell contact-independent immune suppression in which Treg cells maintain immune homeostasis by secreting GrB/PFN.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D015551 Autoimmunity Process whereby the immune system reacts against the body's own tissues. Autoimmunity may produce or be caused by AUTOIMMUNE DISEASES. Autoimmune Response,Autoimmune Responses,Autoimmunities
D015704 CD4 Antigens 55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. They are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. T4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120. Antigens, CD4,CD4 Molecule,CD4 Receptor,CD4 Receptors,Receptors, CD4,T4 Antigens, T-Cell,CD4 Antigen,Receptors, Surface CD4,Surface CD4 Receptor,Antigen, CD4,Antigens, T-Cell T4,CD4 Receptor, Surface,CD4 Receptors, Surface,Receptor, CD4,Surface CD4 Receptors,T-Cell T4 Antigens,T4 Antigens, T Cell

Related Publications

Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
September 2012, Clinical and experimental immunology,
Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
July 2022, Science advances,
Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
May 2013, Immunology,
Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
October 2003, The American journal of pathology,
Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
June 2008, Journal of immunology (Baltimore, Md. : 1950),
Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
July 2010, Immunotherapy,
Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
April 1991, Cell,
Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
January 2001, Arthritis research,
Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
November 2004, Blood,
Hui-Yu Qin, and Rinee Mukherjee, and Edwin Lee-Chan, and Catherine Ewen, and R Chris Bleackley, and Bhagirath Singh
August 2016, Discovery medicine,
Copied contents to your clipboard!