Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone. 2006

U H Lerner
Department of Oral Cell Biology, Umea University, Umea, Sweden. Ulf.Lerner@odont.umu.se

It has been suggested that skeletal nerves fibers may play important roles in neuro-osteogenic interactions. This view is partly based upon information obtained from immunohistochemical studies, chemical and surgical denervation experiments and clinical observations in patients with stroke and spinal cord injury, indicating the presence of a network of nerve fibers in the skeleton and that defective signalling in skeletal nerve fibers affects remodelling of bone. This view is also supported by data showing that functional receptors for signalling molecules in skeletal nerve fibers are expressed in bone cells and that activation of these receptors leads to profound effects on bone forming osteoblasts and bone resorbing osteoclasts. Convincing evidence for a role of neuronal signalling in bone metabolism has been provided by gene deletion approaches in which it has been shown that leptin-sensitive and neuropeptide Y-sensitive receptors in hypothalamus are important for bone remodelling in mice. Recently, gene deletion experiments have shown that calcitonin gene-related peptide (CGRP), one of the neuropeptides present in skeletal nerve fibers, is an important physiological regulator of bone formation at the level of osteoblast activity. CGRP belongs to the calcitonin (CT) family of peptides also including CT, amylin and adrenomedullin, as well as the recently described intermedin and calcitonin receptor-stimulating peptide. These peptides utilize two seven transmembrane G protein-coupled receptors - the calcitonin receptor (CTR) and the calcitonin receptor- like receptor (CRLR) - which can dimerize with three different single transmembrane proteins, making up the RAMP family. Associations between RAMPs and either CTR or CRLR give rise to seven distinct, molecularly characterized, receptors for CT, CGRP, amylin and adrenomedullin. Deletions of the genes for ligands in the CT family of peptides and for one of the receptors have revealed unexpected findings that have changed our view on the role of these peptides in bone remodelling. It was anticipated that deletions of the CT/alpha-CGRP and CTR genes would lead to bone loss, since CT has been shown to inhibit bone resorption in vitro and in vivo and has been used to treat patients with excessive bone resorption. Surprisingly, it was found that CT/alpha-CGRP-/- and CTR+/- mice have increased bone mass due to increased bone formation. Mice with deletion of the amylin gene, however, exhibited bone loss due to enhanced bone resorption. Selective deletion of the alpha-CGRP gene also leads to bone loss, but due to decreased bone formation. Thus, our understanding of the role of the CT family of peptides has been changed dramatically and much more data have to be gained before we fully understand the roles these peptides have in bone biology.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D002116 Calcitonin A peptide hormone that lowers calcium concentration in the blood. In humans, it is released by thyroid cells and acts to decrease the formation and absorptive activity of osteoclasts. Its role in regulating plasma calcium is much greater in children and in certain diseases than in normal adults. Thyrocalcitonin,Calcitonin(1-32),Calcitrin,Ciba 47175-BA,Eel Calcitonin,Calcitonin, Eel,Ciba 47175 BA,Ciba 47175BA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000682 Amyloid A fibrous protein complex that consists of proteins folded into a specific cross beta-pleated sheet structure. This fibrillar structure has been found as an alternative folding pattern for a variety of functional proteins. Deposits of amyloid in the form of AMYLOID PLAQUES are associated with a variety of degenerative diseases. The amyloid structure has also been found in a number of functional proteins that are unrelated to disease. Amyloid Fibril,Amyloid Fibrils,Amyloid Substance,Fibril, Amyloid,Fibrils, Amyloid,Substance, Amyloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015740 Calcitonin Gene-Related Peptide A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator. Calcitonin Gene-Related Peptide I,Calcitonin Gene-Related Peptide II,alpha-CGRP,alpha-Calcitonin Gene-Related Peptide,beta-CGRP,beta-Calcitonin Gene-Related Peptide,Calcitonin Gene Related Peptide,Calcitonin Gene Related Peptide I,Calcitonin Gene Related Peptide II,Gene-Related Peptide, Calcitonin,alpha Calcitonin Gene Related Peptide,beta Calcitonin Gene Related Peptide
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions
D047908 Intracellular Signaling Peptides and Proteins Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors. Intracellular Signaling Peptides,Intracellular Signaling Proteins,Peptides, Intracellular Signaling,Proteins, Intracellular Signaling,Signaling Peptides, Intracellular,Signaling Proteins, Intracellular
D058228 Islet Amyloid Polypeptide A pancreatic beta-cell hormone that is co-secreted with INSULIN. It displays an anorectic effect on nutrient metabolism by inhibiting gastric acid secretion, gastric emptying and postprandial GLUCAGON secretion. Islet amyloid polypeptide can fold into AMYLOID FIBRILS that have been found as a major constituent of pancreatic AMYLOID DEPOSITS. Amlintide,Amylin,IAPP Precursor,IAPP Protein,Insulinoma Amyloid Polypeptide,Insulinoma Amyloid Polypeptide Precursor,Islet Amyloid Polypeptide Precursor,Pancreatic Amylin,Amylin, Pancreatic,Amyloid Polypeptide, Insulinoma,Amyloid Polypeptide, Islet,Polypeptide, Insulinoma Amyloid,Polypeptide, Islet Amyloid

Related Publications

U H Lerner
January 2019, Trends in pharmacological sciences,
U H Lerner
October 2010, Nature reviews. Neurology,
U H Lerner
January 1990, International journal of pancreatology : official journal of the International Association of Pancreatology,
Copied contents to your clipboard!