Okadaic acid induces Golgi apparatus fragmentation and arrest of intracellular transport. 1991

J Lucocq, and G Warren, and J Pryde
Department of Anatomy, University of Berne, Switzerland.

The specific phosphatase inhibitor okadaic acid (OA) induced fragmentation of the Golgi apparatus in interphase HeLa cells. Immunoelectron microscopy for galactosyltransferase identified a major Golgi fragment composed of a cluster of vesicles and tubules that was morphologically indistinguishable from the 'Golgi cluster' previously described in mitotic cells. The presence of homogeneous immunofluorescence staining for galactosyltransferase in OA-treated cells also suggested that isolated Golgi vesicles, previously found in mitotic cells, existed along with the clusters. After removal of OA, both clusters and vesicles appeared to participate in a reassembly pathway that strongly resembled that occurring during telophase. OA also induced inhibition of intracellular transport, another feature of mitotic cells. OA treatment prevented newly synthesised G protein of vesicular stomatitis virus (VSV) from acquiring resistance to endoglycosidase H and from arriving at the cell surface. In addition, fluid phase endocytosis of horseradish peroxidase (HRP) was reduced to less than 10% of control values. All these effects were dose-dependent and reversible. OA should be a useful tool to study the Golgi division and membrane traffic.

UI MeSH Term Description Entries
D007399 Interphase The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs). Interphases
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D004988 Ethers, Cyclic Compounds of the general formula R-O-R arranged in a ring or crown formation. Cyclic Ether,Cyclic Ethers,Ether, Cyclic
D005700 Galactosyltransferases Enzymes that catalyze the transfer of galactose from a nucleoside diphosphate galactose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Galactosyltransferase
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi

Related Publications

J Lucocq, and G Warren, and J Pryde
April 2023, International journal of molecular sciences,
J Lucocq, and G Warren, and J Pryde
August 2010, Experimental cell research,
J Lucocq, and G Warren, and J Pryde
April 1987, Journal of neurocytology,
J Lucocq, and G Warren, and J Pryde
November 2002, The Journal of cell biology,
J Lucocq, and G Warren, and J Pryde
May 2003, Journal of biochemistry and molecular biology,
J Lucocq, and G Warren, and J Pryde
September 2012, Histochemistry and cell biology,
J Lucocq, and G Warren, and J Pryde
January 2023, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!