The role of Paraxial Protocadherin in Xenopus otic placode development. 2006

Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.

Vertebrate inner ear develops from its rudiment, otic placode, which later forms otic vesicle and gives rise to tissues comprising the entire inner ear. Although several signaling molecules have been identified as candidates responsible for inner ear specification and patterning, many details remain elusive. Here, we report that Paraxial Protocadherin (PAPC) is required for otic vesicle formation in Xenopus embryos. PAPC is expressed strictly in presumptive otic placode and later in otic vesicle during inner ear morphogenesis. Knockdown of PAPC by dominant-negative PAPC results in the failure of otic vesicle formation and the loss of early inner ear markers Sox9 and Tbx2, suggesting the requirement of PAPC in the early stage of otic vesicle development. However, PAPC alone is not sufficient to induce otic placode formation.

UI MeSH Term Description Entries
D007758 Ear, Inner The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions. Labyrinth,Bony Labyrinth,Ear, Internal,Inner Ear,Membranous Labyrinth,Bony Labyrinths,Ears, Inner,Ears, Internal,Inner Ears,Internal Ear,Internal Ears,Labyrinth, Bony,Labyrinth, Membranous,Labyrinths,Labyrinths, Bony,Labyrinths, Membranous,Membranous Labyrinths
D000091363 Protocadherins Members of cadherin superfamily involved in cell adhesion and cell-cell interactions in neural development. They are subdivided into clustered (cPcdhs) and non-clustered protocadherin (ncPcdhs) depending whether their genes are tandemly arranged in vertebrates. Cadherin-Related Neuronal Receptors,Clustered Pcdhs,Clustered Protocadherins,Non-Clustered Pcdhs,Non-Clustered Protocadherins,cPcdhs,ncPcdhs,Cadherin Related Neuronal Receptors,Neuronal Receptors, Cadherin-Related,Non Clustered Pcdhs,Non Clustered Protocadherins,Pcdhs, Clustered,Pcdhs, Non-Clustered,Protocadherins, Clustered,Protocadherins, Non-Clustered,Receptors, Cadherin-Related Neuronal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015820 Cadherins Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body. Cadherin,E-Cadherins,Epithelial-Cadherin,Liver Cell Adhesion Molecules,N-Cadherins,Neural Cadherin,P-Cadherins,Uvomorulin,Cadherin-1,Cadherin-2,Cadherin-3,E-Cadherin,Epithelial-Cadherins,Liver Cell Adhesion Molecule,N-Cadherin,Neural Cadherins,P-Cadherin,Placental Cadherins,Cadherin 1,Cadherin 2,Cadherin 3,Cadherin, Neural,Cadherins, Neural,Cadherins, Placental,E Cadherin,E Cadherins,Epithelial Cadherin,Epithelial Cadherins,N Cadherin,N Cadherins,P Cadherin,P Cadherins
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D019521 Body Patterning The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc. Axial Patterning (Embryology),Embryonic Pattern Formation,Polarity of Development,Body Pattern Formation,Body Pattern Specification,Embryonic Pattern Specification,Development Polarity,Embryonic Pattern Formations,Formation, Embryonic Pattern,Pattern Formation, Body,Pattern Formation, Embryonic,Pattern Specification, Body,Pattern Specification, Embryonic,Patterning, Axial (Embryology),Patterning, Body,Specification, Body Pattern,Specification, Embryonic Pattern
D029867 Xenopus Proteins Proteins obtained from various species of Xenopus. Included here are proteins from the African clawed frog (XENOPUS LAEVIS). Many of these proteins have been the subject of scientific investigations in the area of MORPHOGENESIS and development. Xenopus laevis Proteins

Related Publications

Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
April 2008, Genes & development,
Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
April 2004, Development (Cambridge, England),
Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
December 1998, Development (Cambridge, England),
Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
August 2004, The EMBO journal,
Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
February 2012, EMBO reports,
Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
January 1988, Acta oto-laryngologica,
Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
February 2000, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
August 1989, The Journal of experimental zoology,
Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
June 2011, BMC developmental biology,
Rui-Ying Hu, and Peng Xu, and Yue-Lei Chen, and Xin Lou, and Xiaoyan Ding
December 2008, Developmental biology,
Copied contents to your clipboard!