Evaluation of time-dependent cytochrome P450 inhibition using cultured human hepatocytes. 2006

Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
Department of Physical & Metabolic Science, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire, LE11 5RH, UK. dermot.f.mcginnity@astrazeneca.com

Primary human hepatocytes in culture are commonly used to evaluate cytochrome P450 (P450) induction via an enzyme activity endpoint. However, other processes can confound data interpretation. To this end, the impact of time-dependent P450 inhibition in this system was evaluated. Using a substrate-cassette approach, P450 activities were determined after incubation with the prototypic inhibitors tienilic acid (CYP2C9), erythromycin, troleandomycin, and fluoxetine (CYP3A4). Kinetic analysis of enzyme inactivation in hepatocytes was used to describe the effect of these time-dependent inhibitors and derive the inhibition parameters kinact and KI) which generally were in good agreement with the values derived using recombinant P450s and human liver microsomes (HLMs). Tienilic acid selectively inhibited CYP2C9-dependent diclofenac 4'-hydroxylation activity, and erythromycin, troleandomycin, and fluoxetine inhibited CYP3A4-dependent midazolam 1'-hydroxylation in a time- and concentration-dependent manner. Fluoxetine also inhibited CYP2C19-dependent S-mephenytoin 4'-hydroxylation in a time- and concentration-dependent manner in hepatocytes, HLMs, and recombinant CYP2C19 (KI 0.4 microM and kinact 0.5 min(-1)). As expected, the effect of fluoxetine on CYP2D6 in hepatocytes was consistent with potent yet reversible inhibition. A very weak time-dependent CYP2C9 inhibitor (AZ1, a proprietary AstraZeneca compound; KI 30 microM and kinact 0.02 min(-1)) effectively abolished CYP2C9 activity over 24 h at low (micromolar) concentrations in primary cultured human hepatocytes. This work demonstrates that caution is warranted in the interpretation of enzyme induction studies with metabolically stable, weak time-dependent inhibitors, which may have dramatic inhibitory effects on P450 activity in this system. Therefore, in addition to enzyme activity, mRNA and/or protein levels should be measured to fully evaluate the P450 induction potential of a drug candidate.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004917 Erythromycin A bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erycette,Erymax,Erythromycin A,Erythromycin C,Erythromycin Lactate,Erythromycin Phosphate,Ilotycin,T-Stat,Lactate, Erythromycin,Phosphate, Erythromycin,T Stat,TStat
D005260 Female Females
D005473 Fluoxetine The first highly specific serotonin uptake inhibitor. It is used as an antidepressant and often has a more acceptable side-effects profile than traditional antidepressants. Fluoxetin,Fluoxetine Hydrochloride,Lilly-110140,N-Methyl-gamma-(4-(trifluoromethyl)phenoxy)benzenepropanamine,Prozac,Sarafem,Lilly 110140,Lilly110140
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
June 1997, The Journal of laboratory and clinical medicine,
Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
January 2012, Methods in molecular biology (Clifton, N.J.),
Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
June 2020, Drug metabolism and disposition: the biological fate of chemicals,
Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
January 2008, Toxicology,
Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
November 2005, Drug metabolism and disposition: the biological fate of chemicals,
Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
February 2013, Journal of biomolecular screening,
Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
September 2003, World journal of gastroenterology,
Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
April 1994, Toxicology and applied pharmacology,
Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
April 2003, Drug metabolism and disposition: the biological fate of chemicals,
Dermot F McGinnity, and Amanda J Berry, and Jane R Kenny, and Ken Grime, and Robert J Riley
August 1991, Biochemical pharmacology,
Copied contents to your clipboard!