The tonic stretch reflex and spastic hypertonia after spinal cord injury. 2006

Adam J Woolacott, and John A Burne
School of Biomedical Sciences, University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia.

The operational definition of spasticity is focused on increased resistance of joints to passive rotation and the possible origin of this increased resistance in the induced tonic stretch reflex (TSR). This term is applied in the context of both cerebral and spinal injury, implying that a similar reflex mechanism underlies the two disorders. From recent studies it is clear that increased passive joint resistance in resting limbs following stroke is highly correlated with the induced TSR, but this evidence is lacking in spinal injury. The contribution of the TSR to hypertonia in spinal cord injury (SCI) is unclear and it is possible that hypertonia has a different origin in SCI. The contribution of resting and activated TSR activity to joint stiffness was compared in SCI and normal subjects. The magnitude of the TSR in ankle dorsiflexors (DF) and plantarflexors (PF) and mechanical ankle resistive torque were measured at rest and over a range of contraction levels in normal subjects. Similar measures were made in 13 subjects with SCI to the limits of their range of voluntary contraction. Normals and SCI received a pseudo-sinusoidal stretch perturbation of maximum amplitude +/- 20 degrees and frequency band 0.1-3.5 Hz that was comparable to that used in manual clinical testing of muscle tone. Elastic resistance and resonant frequency of the ankle joint, after normalization for limb volume, were significantly lower in complete and incomplete SCI than normal subjects. No reflex response related to stretch velocity was observed. Resting DF and PF TSR gain, when averaged over the tested band of frequencies, were significantly lower in complete SCI than in resting normal subjects (<0.5 microV/deg). Linear regression analysis found no significant relationship between TSR gain and resting joint stiffness in SCI. Mean TSR gain of DFs and PFs at rest was not correlated with the subject variables: age, time since SCI, level of injury, Frankel score, number of spasms per day, Ashworth score or anti-spastic medication. DF and PF reflex gain were linearly related to voluntary contraction level and regression analysis produced similar slopes in incomplete SCI and normal subjects. Hence TSR loop gain was not significantly increased in SCI at any equivalent contraction level. Extrapolation of the regression lines to zero contraction level predicted that reflex threshold was not reduced in SCI. Low frequency passive stretches did not induce significant TSR activity in the resting limbs of any member of this SCI group. The TSR thus did not contribute to their clinical hypertonia. Other reflex mechanisms must contribute to hypertonia as assessed clinically. This result contrasts with our similar study of cerebral spasticity after stroke, where a comparable low frequency stretch perturbation produced clear evidence of increased TSR gain that was correlated with the hypertonia at rest. We conclude that a low frequency stretch perturbation clearly distinguished between spasticity after stroke and SCI. Spasticity in the two conditions is not equivalent and care should be taken in generalizing results between them.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009122 Muscle Hypertonia Abnormal increase in skeletal or smooth muscle tone. Skeletal muscle hypertonicity may be associated with PYRAMIDAL TRACT lesions or BASAL GANGLIA DISEASES. Hypermyotonia,Muscular Hypertonicity,Hypertonia, Detrusor Muscle,Hypertonia, Infantile,Hypertonia, Neonatal,Hypertonia, Sphincter,Hypertonia, Transient,Muscle Tone Increased,Detrusor Muscle Hypertonia,Detrusor Muscle Hypertonias,Hypermyotonias,Hypertonia, Muscle,Hypertonias, Detrusor Muscle,Hypertonias, Infantile,Hypertonias, Muscle,Hypertonias, Neonatal,Hypertonias, Sphincter,Hypertonias, Transient,Hypertonicities, Muscular,Hypertonicity, Muscular,Increased, Muscle Tone,Infantile Hypertonia,Infantile Hypertonias,Muscle Hypertonia, Detrusor,Muscle Hypertonias,Muscle Hypertonias, Detrusor,Muscular Hypertonicities,Neonatal Hypertonia,Neonatal Hypertonias,Sphincter Hypertonia,Sphincter Hypertonias,Tone Increased, Muscle,Transient Hypertonia,Transient Hypertonias
D009128 Muscle Spasticity A form of muscle hypertonia associated with upper MOTOR NEURON DISEASE. Resistance to passive stretch of a spastic muscle results in minimal initial resistance (a "free interval") followed by an incremental increase in muscle tone. Tone increases in proportion to the velocity of stretch. Spasticity is usually accompanied by HYPERREFLEXIA and variable degrees of MUSCLE WEAKNESS. (From Adams et al., Principles of Neurology, 6th ed, p54) Clasp-Knife Spasticity,Spastic,Clasp Knife Spasticity,Spasticity, Clasp-Knife,Spasticity, Muscle
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D012021 Reflex, Abnormal An abnormal response to a stimulus applied to the sensory components of the nervous system. This may take the form of increased, decreased, or absent reflexes. Hyperreflexia,Hyporeflexia,Abnormal Deep Tendon Reflex,Abnormal Reflex,Abnormal Reflexes,Bulbocavernosus Reflex, Decreased,Bulbocavernousus Reflex Absent,Hoffman's Reflex,Palmo-Mental Reflex,Reflex, Absent,Reflex, Acoustic, Abnormal,Reflex, Anal, Absent,Reflex, Anal, Decreased,Reflex, Ankle, Abnormal,Reflex, Ankle, Absent,Reflex, Ankle, Decreased,Reflex, Biceps, Abnormal,Reflex, Biceps, Absent,Reflex, Biceps, Decreased,Reflex, Corneal, Absent,Reflex, Corneal, Decreased,Reflex, Decreased,Reflex, Deep Tendon, Abnormal,Reflex, Deep Tendon, Absent,Reflex, Gag, Absent,Reflex, Gag, Decreased,Reflex, Knee, Abnormal,Reflex, Knee, Decreased,Reflex, Moro, Asymmetric,Reflex, Pendular,Reflex, Triceps, Abnormal,Reflex, Triceps, Absent,Reflex, Triceps, Decreased,Reflexes, Abnormal,Absent Reflex,Decreased Bulbocavernosus Reflex,Decreased Reflex,Palmo Mental Reflex,Pendular Reflex,Reflex Absent, Bulbocavernousus,Reflex, Decreased Bulbocavernosus,Reflex, Hoffman's,Reflex, Palmo-Mental
D012026 Reflex, Stretch Reflex contraction of a muscle in response to stretching, which stimulates muscle proprioceptors. Reflex, Tendon,Stretch Reflex,Tendon Reflex
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies

Related Publications

Adam J Woolacott, and John A Burne
January 1985, Applied neurophysiology,
Adam J Woolacott, and John A Burne
February 1988, Annals of neurology,
Adam J Woolacott, and John A Burne
December 2004, Archives of physical medicine and rehabilitation,
Adam J Woolacott, and John A Burne
March 2006, The Journal of physiology,
Adam J Woolacott, and John A Burne
January 2017, Computers in biology and medicine,
Adam J Woolacott, and John A Burne
November 2001, Physical medicine and rehabilitation clinics of North America,
Adam J Woolacott, and John A Burne
December 1972, Journal of neurology, neurosurgery, and psychiatry,
Adam J Woolacott, and John A Burne
April 1971, Acta physiologica Scandinavica,
Adam J Woolacott, and John A Burne
January 2006, Restorative neurology and neuroscience,
Adam J Woolacott, and John A Burne
January 1991, Revista do Hospital das Clinicas,
Copied contents to your clipboard!