Performance and stability of ethanologenic Escherichia coli strain FBR5 during continuous culture on xylose and glucose. 2006

Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, VIC, Australia 3010.

Escherichia coli FBR5 containing recombinant genes for ethanol production on plasmids that are also required for anaerobic growth was cultivated continuously on 50 g/l xylose or glucose in the absence of antibiotics and without the use of special measures to limit the entry of oxygen into the fermenter. Under chemostat conditions, stable ethanol yields of ca. 80-85% of the theoretical were obtained on both sugars over 26 days at dilution rates of 0.045/h (xylose) and 0.075/h (glucose), with average plasmid retention rates of 96% (xylose) and 97% (glucose). In a continuous fluidized bed fermenter, with the cells immobilized on porous glass beads, the extent of plasmid retention by the free cells fell rapidly, while that of the immobilized cells remained constant. This was shown to be due to diffusion of oxygen through the tubing used to recirculate the medium and free cells. A change to oxygen-impermeable tubing led to a stable high rate of plasmid retention (more than 96% of both the free and immobilized cells) with ethanol yields of ca. 80% on a 50 g/l xylose feed. The maximum permissible level of oxygen availability consistent with high plasmid retention by the strain appears to be of the order of 0.1 mmol per hour per gram dry biomass, based on measurements of the rate of oxygen penetration into the fermenters. Revertant colonies lacking the ethanologenic plasmid were easily detectable by their morphology which correlated well with their lack of ampicillin resistance upon transfer plating.

UI MeSH Term Description Entries
D007218 Industrial Microbiology The study, utilization, and manipulation of those microorganisms capable of economically producing desirable substances or changes in substances, and the control of undesirable microorganisms. Microbiology, Industrial
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000668 Ampicillin Resistance Nonsusceptibility of a microbe to the action of ampicillin, a penicillin derivative that interferes with cell wall synthesis. Ampicillin Resistances,Resistance, Ampicillin,Resistances, Ampicillin
D001709 Biotechnology Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction. Biotechnologies
D014994 Xylose D-Xylose,D Xylose

Related Publications

Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
April 2011, Applied microbiology and biotechnology,
Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
January 1995, Applied biochemistry and biotechnology,
Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
October 2014, Applied and environmental microbiology,
Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
January 1993, Applied biochemistry and biotechnology,
Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
March 2002, Applied and environmental microbiology,
Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
January 1994, Applied biochemistry and biotechnology,
Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
January 2012, Bioengineered,
Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
December 2022, Molecules (Basel, Switzerland),
Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
January 2012, Biotechnology progress,
Gregory J O Martin, and Andreas Knepper, and Bin Zhou, and Neville B Pamment
September 2013, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
Copied contents to your clipboard!