Organization of frontoparietal cortex in the tree shrew (Tupaia belangeri). I. Architecture, microelectrode maps, and corticospinal connections. 2006

Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37240, USA.

Despite extensive investigation of the motor cortex of primates, little is known about the organization of motor cortex in tree shrews, one of their closest living relatives. We investigated the organization of frontoparietal cortex in Belanger's tree shrews (Tupaia belangeri) by using intracortical microstimulation (ICMS), corticospinal tracing, and detailed histological analysis. The results provide evidence for the subdivision of tree shrew frontoparietal cortex into seven distinct areas (five are newly identified), including two motor fields (M1 and M2) and five somatosensory fields (3a, 3b, S2, PV, and SC). The types of movements evoked in M1 and M2 were similar, but M2 required higher currents to elicit movements and had few connections to the cervical spinal cord and distinctive cyto- and immunoarchitecture. The borders between M1 and the anterior somatosensory regions (3a and 3b) were identified primarily from histological analysis, because thresholds were similar between these regions, and differences in corticospinal neuron distribution were subtle. The caudal (SC) and lateral (S2 and PV) somatosensory fields were identified based on differences in architecture and distribution of corticospinal neurons. Myelin-dense modules were identified in lateral cortex, in the expected location of the oral, forelimb, and hindlimb representations of S2, and possibly PV. Evidence for a complex primate-like array of motor fields is lacking in tree shrews, but their motor cortex shares a number of basic features with that of primates, which are not found in more distantly related species, such as rats.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields

Related Publications

Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
April 1978, Brain research,
Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
February 2002, Immunogenetics,
Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
June 1991, The Journal of comparative neurology,
Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
February 1993, The Journal of comparative neurology,
Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
July 2021, The Journal of comparative neurology,
Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
August 1980, The Journal of comparative neurology,
Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
October 1992, The Journal of experimental zoology,
Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
June 2013, Gene,
Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
July 2009, Anatomical record (Hoboken, N.J. : 2007),
Michael S Remple, and Jamie L Reed, and Iwona Stepniewska, and Jon H Kaas
September 1986, The Journal of comparative neurology,
Copied contents to your clipboard!