Subbarrel patterns of thalamocortical innervation in rat somatosensory cortical barrels: Organization and postnatal development. 2006

Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.

Barrel hollows in the posteromedial barrel subfield of adult rat somatosensory cortex typically encompass two or three metabolically and structurally distinct regions, termed subbarrels. We used immunohistochemical staining for vesicular glutamate transporter 2 and the neuronal serotonin transporter, in conjunction with cytochrome oxidase (CO) histochemistry, to investigate the distribution of thalamocortical (TC) axon terminals in relation to subbarrel domains. We found, first, that CO-dark subbarrels are more intensely immunoreactive for thalamocortical terminals than the CO-light clefts that separate them. Second, during the first postnatal week, immunoreactivity for markers of TC terminals is relatively homogeneous throughout the barrel hollow; subbarrel patterns of distribution only become recognizable between P-8 and P-10. These observations extend previous findings that subbarrels denote barrel regions enriched in synaptic contacts. The data also indicate that allocation of TC terminals into subbarrel domains does not occur immediately upon thalamic axon ingrowth. Instead, refinement of TC arbors into subbarrels is a gradual process, the outcome of which is not manifest until the second week of postnatal life.

UI MeSH Term Description Entries
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D005260 Female Females
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons

Related Publications

Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
June 2004, Brain research. Developmental brain research,
Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
October 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
January 2002, The Journal of comparative neurology,
Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
May 1996, Proceedings of the National Academy of Sciences of the United States of America,
Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
October 2009, PLoS computational biology,
Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
January 1985, Journal of neuroscience research,
Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
January 2001, Experimental brain research,
Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
May 1995, The Journal of comparative neurology,
Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
May 2003, Folia morphologica,
Katherine M Louderback, and Christina S Glass, and Lorraine Shamalla-Hannah, and Susan L Erickson, and Peter W Land
January 1977, Neuroscience,
Copied contents to your clipboard!