Transport of messenger RNA from the nucleus to the cytoplasm. 2006

Charles N Cole, and John J Scarcelli
Department of Biochemistry, Dartmouth Medical School Hanover, NH 03755, USA. charles.cole@dartmouth.edu

All movement of molecules and macromolecules between the cytoplasm and the nucleus takes place through nuclear pore complexes (NPCs), very large macromolecular complexes that are the only channels connecting these compartments. mRNA export is mediated by multiple, highly conserved protein factors that couple steps of nuclear pre-mRNA biogenesis to mRNA transport. Mature messenger ribonucleoproteins (mRNPs) diffuse from sites of transcription to NPCs, although some active genes are positioned at the nuclear periphery where they interact physically with components of NPCs. As properly processed mRNPs translocate through the pore, certain mRNP proteins are removed, probably through the enzymatic action of the DEAD-box helicase Dbp5, which binds to Nup159 and Gle1, components of the cytoplasmic filaments of the NPC. Gle1 and the phosphoinositide IP6 activate Dbp5's ATPase activity in vitro and this could provide critical spatial regulation of Dbp5 activity in vivo.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein
D053487 DEAD-box RNA Helicases A large family of RNA helicases that share a common protein motif with the single letter amino acid sequence D-E-A-D (Asp-Glu-Ala-Asp). In addition to RNA helicase activity, members of the DEAD-box family participate in other aspects of RNA metabolism and regulation of RNA function. DEAD-box RNA Helicase,DEAD Box Helicase p68,p68 DEAD Box Protein,p68 RNA Helicase,DEAD box RNA Helicase,DEAD box RNA Helicases,Helicase, DEAD-box RNA,Helicase, p68 RNA,Helicases, DEAD-box RNA,RNA Helicase, DEAD-box,RNA Helicase, p68,RNA Helicases, DEAD-box

Related Publications

Charles N Cole, and John J Scarcelli
September 1994, Cell biology international,
Charles N Cole, and John J Scarcelli
January 1975, Ontogenez,
Charles N Cole, and John J Scarcelli
October 1966, The Journal of cell biology,
Charles N Cole, and John J Scarcelli
August 1992, Seminars in cell biology,
Charles N Cole, and John J Scarcelli
January 1987, Progress in nucleic acid research and molecular biology,
Charles N Cole, and John J Scarcelli
October 2007, Nature reviews. Molecular cell biology,
Charles N Cole, and John J Scarcelli
June 1978, Canadian journal of biochemistry,
Charles N Cole, and John J Scarcelli
February 1972, Cancer research,
Charles N Cole, and John J Scarcelli
January 1968, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
Charles N Cole, and John J Scarcelli
September 1977, Developmental biology,
Copied contents to your clipboard!