Ca2+ and voltage inactivate Ca2+ channels in guinea-pig ventricular myocytes through independent mechanisms. 1991

R W Hadley, and W J Lederer
Department of Physiology, University of Maryland School of Medicine, Baltimore 21201.

1. L-type Ca2+ currents and Ca2+ channel gating currents were studied in isolated guinea-pig ventricular heart cells using the whole-cell patch-clamp technique, in order to investigate the mechanism of Ca(2+)-dependent inactivation. The effect of altering the intracellular Ca2+ concentration ([Ca2+]i) on these currents was studied through photorelease of intracellular Ca2+ ions using the photolabile Ca2+ chelators DM-nitrophen and nitr-5. 2. We found that step increases in [Ca2+]i produced by photorelease could either increase or decrease the L-type Ca2+ current. Specifically, Ca2+ photorelease from DM-nitrophen almost exclusively caused inactivation of the Ca2+ current. In contrast, Ca2+ photorelease from nitr-5 had a biphasic effect: a small, rapid inactivation of the Ca2+ current was followed by a slow potentiation. These two Ca(2+)-dependent processes seemed to differ in their Ca2+ dependence, as small Ca2+ photoreleases elicited potentiation without a preceding inactivation, whereas larger photoreleases elicited both inactivation and potentiation. 3. The mechanism of the Ca(2+)-dependent inactivation of Ca2+ channels was explored by comparing the effects of voltage and photoreleased Ca2+ on the Ca2+ current and the Ca2+ channel gating current. Voltage was found to reduce both the Ca2+ current and the gating current proportionally. However, Ca2+ photorelease from intracellular DM-nitrophen inactivated the Ca2+ current without having any effect on the gating current. 4. The dephosphorylation hypothesis for Ca(2+)-dependent inactivation was tested by applying isoprenaline to the cells before eliciting a maximal rise of [Ca2+]i (maximal flash intensity, zero external [Na+]i). Isoprenaline could completely prevent Ca(2+)-dependent inactivation under these conditions, even when [Ca2+]i rose so high as to cause an irreversible contracture of the cell. 5. We concluded from these experiments that voltage and Ca2+ ions inactivate the L-type Ca2+ channel through separate, independent mechanisms. In addition, we found that Ca(2+)-dependent inactivation does not result in the immobilization of gating charge, and apparently closes the Ca2+ permeation pathway through a mechanism that does not involve the voltage-sensing region of the channel. Furthermore, we found that Ca(2+)-dependent inactivation is entirely sensitive to beta-adrenergic stimulation. These facts suggest that either Ca(2+)-dependent inactivation results from Ca(2+)-dependent dephosphorylation of the Ca2+ channel, or that Ca(2+)-dependent inactivation is modulated by protein kinase A.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005029 Ethylenediamines Derivatives of ethylenediamine (the structural formula NH2CH2CH2NH2).
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid

Related Publications

R W Hadley, and W J Lederer
July 1997, The American journal of physiology,
R W Hadley, and W J Lederer
September 1983, Pflugers Archiv : European journal of physiology,
R W Hadley, and W J Lederer
December 2002, The Journal of physiology,
R W Hadley, and W J Lederer
November 1995, Journal of cardiovascular pharmacology,
R W Hadley, and W J Lederer
February 1990, The American journal of physiology,
R W Hadley, and W J Lederer
December 1998, The Journal of physiology,
Copied contents to your clipboard!