GABAB receptor-mediated inhibition of Ca2+ currents and synaptic transmission in cultured rat hippocampal neurones. 1991

K P Scholz, and R J Miller
Department of Pharmacological and Physiological Sciences, University of Chicago, IL 60637.

1. The effects of activation of GABAB receptors on Ca2+ currents (ICa) were investigated by application of whole-cell patch-clamp techniques to pyramidal neurones and non-pyramidal interneurones from the rat hippocampus grown in cell culture. 2. (+/-)-Baclofen (10 microM) reduced ICa evoked in pyramidal neurones at 0 mV from a holding potential of -80 mV by 33 +/- 3%. Inhibition could be observed at the peak of ICa with significant inhibition still present after 200 ms at 0 mV. When Ba2+ was used as the charge carrier (IBa) baclofen inhibited 28 +/- 3% of the current at -20 mV from a holding potential of -80 mV. The GABAB receptor antagonist 2-OH-saclofen (50-200 microM) blocked the actions of baclofen. 3. The selective Ca2+ channel blocker, omega-conotoxin fraction GVIA (omega-CgTX), was used to characterize the Ca2+ currents inhibited by baclofen. omega-CgTX (5 microM) blocked 24 +/- 3% of IBa. Following block of the omega-CgTX-sensitive current, baclofen inhibited significantly less current than under control conditions. 4. Addition of the dihydropyridine Ca2+ channel antagonist nimodipine (1 microM) inhibited 18 +/- 5% of ICa at 0 mV from a holding potential of -80 mV and 44 +/- 9% from a holding potential of -40 mV. In addition, nimodipine partially occluded subsequent responses to application of baclofen. 5. In the presence of both 5 microM-omega-CgTX and 200 nM-nimodipine, responses to baclofen were almost completely blocked at depolarized holding potentials where the dihydropyridines are most effective. 6. Inclusion of 500 microM-guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) in the patch pipette enhanced the response to a subsaturating concentration of baclofen and rendered the response irreversible. Subsequent addition of the adenosine receptor agonist 2-Cl-adenosine (2-CA) (1 microM; which also reduces ICa under control conditions) was without effect, suggesting that these two receptor-effector pathways converge. 7. The actions of baclofen on ICa were blocked by pre-treatment of the cultures with pertussis toxin (250 ng/ml). 8. Baclofen also inhibited ICa in non-pyramidal neurones from the hippocampus, but was slightly less effective. 9. Baclofen reduced both excitatory- and inhibitory postsynaptic currents (EPSCs and IPSCs) recorded as a consequence of extracellular stimulation of presynaptic neurones. This action was blocked by 2-OH-saclofen (200 microM) and also by pretreatment of the cultures with pertussis toxin.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002120 Calcium Channel Agonists Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture. Calcium Channel Activators,Calcium Channel Agonists, Exogenous,Calcium Channel Agonist,Exogenous Calcium Channel Agonists,Activators, Calcium Channel,Agonist, Calcium Channel,Agonists, Calcium Channel,Channel Activators, Calcium,Channel Agonist, Calcium,Channel Agonists, Calcium
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001418 Baclofen A GAMMA-AMINOBUTYRIC ACID derivative that is a specific agonist of GABA-B RECEPTORS. It is used in the treatment of MUSCLE SPASTICITY, especially that due to SPINAL CORD INJURIES. Its therapeutic effects result from actions at spinal and supraspinal sites, generally the reduction of excitatory transmission. Baclophen,Chlorophenyl GABA,Apo-Baclofen,Atrofen,Ba-34,647,Ba-34647,Baclofen AWD,Baclofène-Irex,Baclospas,CIBA-34,647-BA,Clofen,Gen-Baclofen,Genpharm,Lebic,Lioresal,Liorésal,Nu-Baclo,PCP-GABA,PMS-Baclofen,beta-(Aminomethyl)-4-chlorobenzenepropanoic Acid,beta-(p-Chlorophenyl)-gamma-aminobutyric Acid,AWD, Baclofen,Apo Baclofen,ApoBaclofen,Ba34,647,Ba34647,Baclofène Irex,BaclofèneIrex,CIBA34,647BA,GABA, Chlorophenyl,Gen Baclofen,GenBaclofen,Nu Baclo,NuBaclo,PMS Baclofen,PMSBaclofen

Related Publications

K P Scholz, and R J Miller
November 1984, The Journal of physiology,
K P Scholz, and R J Miller
April 2005, Brain research. Molecular brain research,
K P Scholz, and R J Miller
April 2000, Neurogastroenterology and motility,
Copied contents to your clipboard!