Multiscale 3D shape analysis using spherical wavelets. 2005

Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, USA. delfin@cc.gatech.edu

Shape priors attempt to represent biological variations within a population. When variations are global, Principal Component Analysis (PCA) can be used to learn major modes of variation, even from a limited training set. However, when significant local variations exist, PCA typically cannot represent such variations from a small training set. To address this issue, we present a novel algorithm that learns shape variations from data at multiple scales and locations using spherical wavelets and spectral graph partitioning. Our results show that when the training set is small, our algorithm significantly improves the approximation of shapes in a testing set over PCA, which tends to oversmooth data.

UI MeSH Term Description Entries
D007089 Image Enhancement Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level. Image Quality Enhancement,Enhancement, Image,Enhancement, Image Quality,Enhancements, Image,Enhancements, Image Quality,Image Enhancements,Image Quality Enhancements,Quality Enhancement, Image,Quality Enhancements, Image
D007090 Image Interpretation, Computer-Assisted Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease. Image Interpretation, Computer Assisted,Computer-Assisted Image Interpretation,Computer-Assisted Image Interpretations,Image Interpretations, Computer-Assisted,Interpretation, Computer-Assisted Image,Interpretations, Computer-Assisted Image
D010363 Pattern Recognition, Automated In INFORMATION RETRIEVAL, machine-sensing or identification of visible patterns (shapes, forms, and configurations). (Harrod's Librarians' Glossary, 7th ed) Automated Pattern Recognition,Pattern Recognition System,Pattern Recognition Systems
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001185 Artificial Intelligence Theory and development of COMPUTER SYSTEMS which perform tasks that normally require human intelligence. Such tasks may include speech recognition, LEARNING; VISUAL PERCEPTION; MATHEMATICAL COMPUTING; reasoning, PROBLEM SOLVING, DECISION-MAKING, and translation of language. AI (Artificial Intelligence),Computer Reasoning,Computer Vision Systems,Knowledge Acquisition (Computer),Knowledge Representation (Computer),Machine Intelligence,Computational Intelligence,Acquisition, Knowledge (Computer),Computer Vision System,Intelligence, Artificial,Intelligence, Computational,Intelligence, Machine,Knowledge Representations (Computer),Reasoning, Computer,Representation, Knowledge (Computer),System, Computer Vision,Systems, Computer Vision,Vision System, Computer,Vision Systems, Computer
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D013382 Subtraction Technique Combination or superimposition of two images for demonstrating differences between them (e.g., radiograph with contrast vs. one without, radionuclide images using different radionuclides, radiograph vs. radionuclide image) and in the preparation of audiovisual materials (e.g., offsetting identical images, coloring of vessels in angiograms). Subtraction Technic,Subtraction Technics,Subtraction Techniques,Technic, Subtraction,Technics, Subtraction,Technique, Subtraction,Techniques, Subtraction
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D021621 Imaging, Three-Dimensional The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object. Computer-Assisted Three-Dimensional Imaging,Imaging, Three-Dimensional, Computer Assisted,3-D Image,3-D Imaging,Computer-Generated 3D Imaging,Three-Dimensional Image,Three-Dimensional Imaging, Computer Generated,3 D Image,3 D Imaging,3-D Images,3-D Imagings,3D Imaging, Computer-Generated,3D Imagings, Computer-Generated,Computer Assisted Three Dimensional Imaging,Computer Generated 3D Imaging,Computer-Assisted Three-Dimensional Imagings,Computer-Generated 3D Imagings,Image, 3-D,Image, Three-Dimensional,Images, 3-D,Images, Three-Dimensional,Imaging, 3-D,Imaging, Computer-Assisted Three-Dimensional,Imaging, Computer-Generated 3D,Imaging, Three Dimensional,Imagings, 3-D,Imagings, Computer-Assisted Three-Dimensional,Imagings, Computer-Generated 3D,Imagings, Three-Dimensional,Three Dimensional Image,Three Dimensional Imaging, Computer Generated,Three-Dimensional Images,Three-Dimensional Imaging,Three-Dimensional Imaging, Computer-Assisted,Three-Dimensional Imagings,Three-Dimensional Imagings, Computer-Assisted

Related Publications

Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
January 2008, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention,
Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
April 2007, Proceedings. IEEE International Symposium on Biomedical Imaging,
Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
April 2007, IEEE transactions on medical imaging,
Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
January 1999, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society,
Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
February 2011, BMC bioinformatics,
Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
January 2009, Cell biochemistry and biophysics,
Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
July 2008, Journal of microscopy,
Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
July 2008, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society,
Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
October 2023, Applied optics,
Delphine Nain, and Steven Haker, and Aaron Bobick, and Allen R Tannenbaum
August 2016, Medical image analysis,
Copied contents to your clipboard!