When a sperm meets an egg: block to polyspermy. 2006

Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.

Embryonic development is initiated after the fertilizing spermatozoon enters the egg and triggers a series of events known as egg activation. Activation results in an increase in intracellular calcium concentration, cortical granule exocytosis (CGE), cell cycle resumption and recruitment of maternal mRNA. CGE is an evolutionary developed mechanism that causes modification of the zona pellucida to prevent penetration of additional spermatozoa, ensuring successful egg activation and embryo development. The egg CGE is a unique and convenient mammalian model for studying the different proteins participating at the membrane fusion cascade, which, unlike other secretory cells, occurs only once in the egg's lifespan. This article highlights a number of proteins, ascribed to participate in CGE and thus the block to polyspermy. CGE can be triggered either by a calcium dependent pathway, or via protein kinase C (PKC) activation that requires a very low calcium concentration. In a recent study, we suggested that the filamentous actin (F-actin) at the egg's cortex is a dynamic network. It can be maneuvered towards allowing CGE by activated actin associated proteins and/or by activated PKC and its down stream proteins, such as myristoylated alanine-rich C kinase substrate (MARCKS). MARCKS, a protein known to cross-link F-actin in other cell types, was found to be expressed and colocalized with actin in non-activated MII eggs. We further demonstrated MARCKS dissociation from actin after activation by ionomycin, a process that can lead to the breakdown of the actin network, thus allowing CGE. The more we know of the intricate process of CGE and of the proteins participating in it, the more the assisted reproductive procedures might benefit from that knowledge.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D005260 Female Females
D005306 Fertilization The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE. Conception,Fertilization, Delayed,Fertilization, Polyspermic,Conceptions,Delayed Fertilization,Delayed Fertilizations,Fertilizations,Fertilizations, Delayed,Fertilizations, Polyspermic,Polyspermic Fertilization,Polyspermic Fertilizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013084 Sperm-Ovum Interactions Interactive processes between the oocyte (OVUM) and the sperm (SPERMATOZOA) including sperm adhesion, ACROSOME REACTION, sperm penetration of the ZONA PELLUCIDA, and events leading to FERTILIZATION. Ovum-Sperm Interactions,Sperm Penetration,Egg-Sperm Interactions,Gamete Interactions,Oocyte-Sperm Interactions,Sperm-Egg Interactions,Sperm-Egg Penetration,Sperm-Oocyte Interactions,Sperm-Oocyte Penetration,Sperm-Ovum Penetration,Sperm-Zona Pellucida Penetration,Egg Sperm Interactions,Egg-Sperm Interaction,Gamete Interaction,Oocyte Sperm Interactions,Oocyte-Sperm Interaction,Ovum Sperm Interactions,Ovum-Sperm Interaction,Sperm Egg Interactions,Sperm Egg Penetration,Sperm Oocyte Interactions,Sperm Oocyte Penetration,Sperm Ovum Interactions,Sperm Ovum Penetration,Sperm Penetrations,Sperm Zona Pellucida Penetration,Sperm-Egg Interaction,Sperm-Egg Penetrations,Sperm-Oocyte Interaction,Sperm-Oocyte Penetrations,Sperm-Ovum Interaction,Sperm-Ovum Penetrations,Sperm-Zona Pellucida Penetrations
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
June 2016, Nature,
Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
January 2019, Methods in cell biology,
Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
October 1994, Development, growth & differentiation,
Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
January 2014, Advances in experimental medicine and biology,
Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
January 1980, International review of cytology,
Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
June 1978, Science (New York, N.Y.),
Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
March 2020, Molecular reproduction and development,
Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
February 2020, eLife,
Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
April 1976, The Journal of experimental zoology,
Alina Tsaadon, and Efrat Eliyahu, and Nataly Shtraizent, and Ruth Shalgi
August 1993, Zygote (Cambridge, England),
Copied contents to your clipboard!