Nerve growth factor affects Ca2+ currents via the p75 receptor to enhance prolactin mRNA levels in GH3 rat pituitary cells. 2006

Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
Department of Physiology, Biophysics and Neurosciences, Cinvestav-IPN, AP 14-740, Mexico, DF 07000, Mexico.

In clonal pituitary GH(3) cells, spontaneous action potentials drive the opening of Ca(v)1 (L-type) channels, leading to Ca(2+) transients that are coupled to prolactin gene transcription. Nerve growth factor (NGF) has been shown to stimulate prolactin synthesis by GH(3) cells, but the underlying mechanisms are unknown. Here we studied whether NGF influences prolactin gene expression and Ca(2+) currents. By using RT-PCR, NGF (50 ng ml(-1)) was found to augment prolactin mRNA levels by approximately 80% when applied to GH(3) cells for 3 days. A parallel change in the prolactin content was detected by Western blotting. Both NGF-induced responses were mimicked by an agonist (Bay K 8644) and prevented by a blocker (nimodipine) of L-type channels. In whole-cell patch-clamp experiments, NGF enhanced the L-type Ca(2+) current by approximately 2-fold within 60 min. This effect reversed quickly upon growth factor withdrawal, but was maintained for days in the continued presence of NGF. In addition, chronic treatment (>or= 24 h) with NGF amplified the T-type current, which flows through Ca(v)3 channels and is thought to support pacemaking activity. Thus, NGF probably increases the amount of Ca(2+) that enters per action potential and may also induce a late increase in spike frequency. MC192, a specific antibody for the p75 neurotrophin receptor, but not tyrosine kinase inhibitors (K252a and lavendustin A), blocked the effects of NGF on Ca(2+) currents. Overall, the results indicate that NGF activates the p75 receptor to cause a prolonged increase in Ca(2+) influx through L-type channels, which in turn up-regulates the prolactin mRNA.

UI MeSH Term Description Entries
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
November 1983, Proceedings of the National Academy of Sciences of the United States of America,
Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
September 1988, Journal of molecular endocrinology,
Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
November 1997, Neurochemical research,
Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
November 1998, Brain research,
Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
August 1984, Journal of cellular physiology,
Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
December 2012, Endocrine,
Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
January 2002, Journal of neuro-oncology,
Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
November 1991, Molecular and cellular endocrinology,
Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
December 1999, FEBS letters,
Adriana M López-Domínguez, and Juan Luis Espinosa, and Araceli Navarrete, and Guillermo Avila, and Gabriel Cota
October 2009, Glia,
Copied contents to your clipboard!