Metabotropic glutamate receptors and epilepsy. 2006

Jorge Ure, and Michel Baudry, and Mónica Perassolo
Department of Neurology, Borda Hospital, Universidad de Buenos Aires, Ramón Carrillo 375, Buenos Aires, Argentina. jorgeure@hotmail.com

Metabotropic glutamate receptors (mGluRs) play an important role in the initiation of ictal discharges by participating in the interictal-ictal transition, and may play a crucial role in recruiting normal brain tissue into synchronized discharges, thereby facilitating propagation of seizure activity. In this article we present a review of mGluRs and epilepsy studies. Structural features of mGluRs offer multiple possibilities for synthetic compounds to modulate their activity, and for many reasons these compounds are good candidates for therapeutic applications. Group I mGluRs enhance excitatory transmission as much as groups II and III mGluRs can modulate those effects. Finally, main avenues to induce epileptogenesis are considered: activation of Ca2+ channels and Ca2+/CaMKII cascade, overexpression of AMPA and/or KA receptors, enhanced NMDARs function, activation of protooncogenes leading to a steady epileptogenic state, enhancement of INaP currents, blockade of A and/or M K(+) currents, calcium channelopathies, diminished number of GABARs or functions, and down-regulation of glutamate transporters. Deregulation of mGluR signaling functions including deficits in groups II and III mGluRs or hyperactivation of group I mGluRs may occur in some forms of epilepsy, therefore targeting these mechanisms with specific pharmacological tools could provide new developments for original therapeutic approaches.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018094 Receptors, Metabotropic Glutamate Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action. Glutamate Receptors, Metabotropic,Metabotropic Glutamate Receptors,Receptors, Glutamate, Metabotropic,Metabotropic Glutamate Receptor,Glutamate Receptor, Metabotropic,Receptor, Metabotropic Glutamate

Related Publications

Jorge Ure, and Michel Baudry, and Mónica Perassolo
January 1999, Advances in neurology,
Jorge Ure, and Michel Baudry, and Mónica Perassolo
June 2002, Current drug targets. CNS and neurological disorders,
Jorge Ure, and Michel Baudry, and Mónica Perassolo
February 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Jorge Ure, and Michel Baudry, and Mónica Perassolo
February 2007, Amino acids,
Jorge Ure, and Michel Baudry, and Mónica Perassolo
November 2006, Cell and tissue research,
Jorge Ure, and Michel Baudry, and Mónica Perassolo
December 2002, Pharmacology, biochemistry, and behavior,
Jorge Ure, and Michel Baudry, and Mónica Perassolo
September 2002, Pharmacology, biochemistry, and behavior,
Jorge Ure, and Michel Baudry, and Mónica Perassolo
August 2003, European journal of pharmacology,
Jorge Ure, and Michel Baudry, and Mónica Perassolo
January 1998, Progress in brain research,
Jorge Ure, and Michel Baudry, and Mónica Perassolo
May 2002, Epilepsy currents,
Copied contents to your clipboard!