Epigenetic silencing of 14-3-3sigma in cancer. 2006

Dmitri Lodygin, and Heiko Hermeking
Molecular Oncology, Independent Max-Planck Research Group, Max-Planck-Institute of Biochemistry, Martinsried, Munich, Germany.

The 14-3-3sigma gene is a direct target of the p53 tumor suppressor and its product inhibits cell cycle progression. Recently, a proteomic analysis revealed that 14-3-3sigma regulates additional cellular processes relevant to carcinogenesis, as migration and MAP-kinase signalling. The expression of 14-3-3sigma is down-regulated by CpG methylation in several types of human cancer, among them prostate, lung, breast and several types of skin cancer. The epigenetic inactivation of 14-3-3sigma occurs at an early stage of tumor development and may allow evasion from senescence and promote genomic instability. In the future the detection of CpG methylation of 14-3-3sigma may be used for diagnostic and prognostic purposes.

UI MeSH Term Description Entries
D008297 Male Males
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases
D005095 Exoribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of RNA. It includes EC 3.1.13.-, EC 3.1.14.-, EC 3.1.15.-, and EC 3.1.16.-. EC 3.1.- Exoribonuclease
D005260 Female Females
D006655 Histone Deacetylases Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes. Class I Histone Deacetylases,Class II Histone Deacetylases,HDAC Proteins,Histone Deacetylase,Histone Deacetylase Complexes,Complexes, Histone Deacetylase,Deacetylase Complexes, Histone,Deacetylase, Histone,Deacetylases, Histone

Related Publications

Dmitri Lodygin, and Heiko Hermeking
January 2010, Molecular bioSystems,
Dmitri Lodygin, and Heiko Hermeking
September 2005, Neoplasia (New York, N.Y.),
Dmitri Lodygin, and Heiko Hermeking
June 2006, Seminars in cancer biology,
Dmitri Lodygin, and Heiko Hermeking
July 2004, Biochemical and biophysical research communications,
Dmitri Lodygin, and Heiko Hermeking
May 2004, Clinical cancer research : an official journal of the American Association for Cancer Research,
Dmitri Lodygin, and Heiko Hermeking
December 2008, Clinical cancer research : an official journal of the American Association for Cancer Research,
Dmitri Lodygin, and Heiko Hermeking
June 2009, Anticancer research,
Dmitri Lodygin, and Heiko Hermeking
October 2005, Clinical cancer research : an official journal of the American Association for Cancer Research,
Dmitri Lodygin, and Heiko Hermeking
June 2016, International journal of immunopathology and pharmacology,
Copied contents to your clipboard!