Role of the herpes simplex virus helicase-primase complex during adeno-associated virus DNA replication. 2006

Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
Institut für Virologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, 12203 Berlin, Germany.

A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, both in vitro and in the nuclear HSV replication domains of coinfected cells. In this study the functional role(s) of HSV helicase and primase during AAV DNA replication were analyzed. To differentiate between their necessity as structural components of the HSV replication complex or as active enzymes, point mutations within the helicase and primase catalytic domains were analyzed. In two complementary approaches the remaining HSV helper functions were either provided by infection with HSV mutants or by plasmid transfection. We show here that upon cotransfection of the minimal four HSV proteins (i.e., the four proteins constituting the minimal requirements for basal AAV replication), UL52 primase catalytic activity was not required for AAV DNA replication. In contrast, UL5 helicase activity was necessary for fully efficient replication. Confocal microscopy confirmed that all mutants retained the ability to support formation of ICP8-positive nuclear replication foci, to which AAV Rep78 colocalized in a manner strictly dependent on the presence of AAV single-stranded DNA (ssDNA). The data indicate that recruitment of AAV Rep78 and ssDNA to nuclear replication sites by the four HSV helper proteins is maintained in the absence of catalytic primase or helicase activities and suggest an involvement of the HSV UL5 helicase activity during AAV DNA replication.

UI MeSH Term Description Entries
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000229 Dependovirus A genus of the family PARVOVIRIDAE, subfamily PARVOVIRINAE, which are dependent on a coinfection with helper adenoviruses or herpesviruses for their efficient replication. The type species is Adeno-associated virus 2. Adeno-Associated Viruses,Dependoparvovirus,Adeno-Associated Virus,Virus, Adeno-Associated,Viruses, Adeno-Associated,Adeno Associated Virus,Adeno Associated Viruses,Dependoparvoviruses,Dependoviruses,Virus, Adeno Associated,Viruses, Adeno Associated
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D018139 Simplexvirus A genus of the family HERPESVIRIDAE, subfamily ALPHAHERPESVIRINAE, consisting of herpes simplex-like viruses. The type species is HERPESVIRUS 1, HUMAN. Herpes Simplex Virus,Herpesvirus 1, Saimiriine,Herpesvirus 1, Saimirine,Herpesvirus 16, Cercopithecine,Marmoset Virus,Cercopithecine Herpesvirus 16,Herpes Labialis Virus,Herpes-T Virus,Herpesvirus 1 (alpha), Saimirine,Herpesvirus Hominis,Herpesvirus Papio 2,Herpesvirus Platyrhinae,Marmoset Herpesvirus,Saimiriine Herpesvirus 1,Herpes Labialis Viruses,Herpes Simplex Viruses,Herpes T Virus,Herpes-T Viruses,Herpesvirus Homini,Herpesvirus, Marmoset,Herpesviruses, Marmoset,Homini, Herpesvirus,Hominis, Herpesvirus,Labialis Virus, Herpes,Labialis Viruses, Herpes,Marmoset Herpesviruses,Marmoset Viruses,Platyrhinae, Herpesvirus,Saimirine Herpesvirus 1,Simplexviruses,Virus, Herpes Labialis,Viruses, Herpes Labialis
D019915 DNA Primase A single-stranded DNA-dependent RNA polymerase that functions to initiate, or prime, DNA synthesis by synthesizing oligoribonucleotide primers. EC 2.7.7.-. Primase,Bacteriophage T7 Gene 4 Protein,DnaG (Primase),DnaG Gene Product,DnaG Protein,T7 DNA Primase-Helicase Protein,T7 DNA-Priming Protein,T7 gene-4 protein,DNA-Priming Protein, T7,Primase, DNA,Protein, T7 DNA-Priming,T7 DNA Primase Helicase Protein,T7 DNA Priming Protein,T7 gene 4 protein

Related Publications

Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
June 2021, Open biology,
Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
April 1995, The Journal of biological chemistry,
Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
April 1989, Proceedings of the National Academy of Sciences of the United States of America,
Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
February 1998, Journal of virology,
Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
November 1998, The Journal of biological chemistry,
Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
July 1979, The Journal of biological chemistry,
Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
January 2011, Journal of virology,
Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
September 2017, The Journal of biological chemistry,
Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
September 2021, Antimicrobial agents and chemotherapy,
Heiko Slanina, and Stefan Weger, and Nigel D Stow, and Annette Kuhrs, and Regine Heilbronn
June 1994, Journal of virology,
Copied contents to your clipboard!