Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties. 2006

M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
Department of Animal Health, Welfare and Nutrition, Danish Institute of Agricultural Sciences, Research Centre Foulum, 8830 Tjele, Denmark. mette.hedemann@agrsci.dk

The main objective of this study was to determine the effect of fiber source and concentration on morphological characteristics, mucin staining pattern, and mucosal enzyme activities in the gastrointestinal tract of pigs. The experiment included 50 pigs from 10 litters weaned at 4 wk of age (BW 8.6 +/- 1.4 kg) and divided into 5 treatment groups. Diets containing fiber of various physico-chemical properties and concentrations were formulated to contain 73, 104, or 145 g of dietary fiber/kg of DM. The diets were based on raw wheat and barley flours. Pectin and barley hulls, representing soluble and insoluble fiber sources, respectively, were used to increase the fiber concentration. The pigs were fed the experimental diets for 9 d, and then the pigs were euthanized and the entire gastrointestinal tract was removed. Tissue samples were taken from the mid and distal small intestine and from the mid colon. Inclusion of pectin in the diets significantly decreased (P < 0.001) ADFI and ADG compared with pigs fed no pectin. The villi and the crypts were shorter in pigs fed pectin-containing diets, but the villous height/crypt depth ratio was unaltered. Pectin significantly decreased the area of mucins in the crypts of the small intestine, indicating that the pigs fed the pectin-containing diet would probably be more susceptible to pathogenic bacteria, although this cannot be separated from the impact on ADFI. The lectin-binding pattern of the intestinal mucosa was unaffected by diet. The activity of lactase and maltase was increased in pigs fed diets with high fiber content, whereas sucrase activity was increased in pigs fed the pectin-containing diets. The activity of the peptidases, aminopeptidase N and dipeptidylpeptidase IV, was increased when feeding high fiber diets, whereas the activity of gamma-glutamyl transpeptidase remained unaffected by the experimental diets. In conclusion, the reduced feed intake observed with the pectin-containing diets could explain the lower villous height and crypt depth observed in this study. However, direct effects of pectin also are possible, and thus further study is warranted. Feeding pigs high insoluble fiber diets improved gut morphology by increasing villi length and increased mucosal enzyme activity when compared with pigs fed pectin-containing diets. The mucin content as determined by staining characteristics suggests that pigs fed high insoluble fiber diets might be better protected against pathogenic bacteria than pigs fed diets high in soluble fiber.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008297 Male Males
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004043 Dietary Fiber The remnants of plant cell walls that are resistant to digestion by the alimentary enzymes of man. It comprises various polysaccharides and lignins. Fiber, Dietary,Roughage,Wheat Bran,Bran, Wheat,Brans, Wheat,Dietary Fibers,Fibers, Dietary,Roughages,Wheat Brans
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000821 Animal Feed Foodstuff used especially for domestic and laboratory animals, or livestock. Fodder,Animal Feeds,Feed, Animal,Feeds, Animal,Fodders
D000824 Animal Nutritional Physiological Phenomena Nutritional physiology of animals. Animal Nutrition Physiology,Animal Nutritional Physiology Phenomena,Animal Nutritional Physiological Phenomenon,Animal Nutritional Physiology,Animal Nutritional Physiology Phenomenon,Veterinary Nutritional Physiology,Nutrition Physiologies, Animal,Nutrition Physiology, Animal,Nutritional Physiology, Animal,Nutritional Physiology, Veterinary,Physiology, Animal Nutrition,Physiology, Animal Nutritional,Physiology, Veterinary Nutritional
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
June 1988, Journal of animal science,
M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
January 2022, Animal : an international journal of animal bioscience,
M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
December 2018, Journal of animal science,
M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
December 2006, Journal of animal science,
M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
December 2017, Journal of animal physiology and animal nutrition,
M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
January 2020, Journal of animal science and technology,
M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
August 2001, Research in veterinary science,
M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
January 2024, Journal of animal science,
M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
September 2017, Journal of animal science,
M S Hedemann, and M Eskildsen, and H N Laerke, and C Pedersen, and J E Lindberg, and P Laurinen, and K E Bach Knudsen
September 2008, BMC genomics,
Copied contents to your clipboard!