Live imaging of yeast Golgi cisternal maturation. 2006

Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
Molecular Membrane Biology Laboratory, RIKEN Discovery Research Institute, Wako, Saitama 351-0198, Japan.

There is a debate over how protein trafficking is performed through the Golgi apparatus. In the secretory pathway, secretory proteins that are synthesized in the endoplasmic reticulum enter the early compartment of the Golgi apparatus called cis cisternae, undergo various modifications and processing, and then leave for the plasma membrane from the late (trans) cisternae. The cargo proteins must traverse the Golgi apparatus in the cis-to-trans direction. Two typical models propose either vesicular transport or cisternal progression and maturation for this process. The vesicular transport model predicts that Golgi cisternae are distinct stable compartments connected by vesicular traffic, whereas the cisternal maturation model predicts that cisternae are transient structures that form de novo, mature from cis to trans, and then dissipate. Technical progress in live-cell imaging has long been awaited to address this problem. Here we show, by the use of high-speed three-dimensional confocal microscopy, that yeast Golgi cisternae do change the distribution of resident membrane proteins from the cis nature to the trans over time, as proposed by the maturation model, in a very dynamic way.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D050600 SNARE Proteins A superfamily of small proteins which are involved in the MEMBRANE FUSION events, intracellular protein trafficking and secretory processes. They share a homologous SNARE motif. The SNARE proteins are divided into subfamilies: QA-SNARES; QB-SNARES; QC-SNARES; and R-SNARES. The formation of a SNARE complex (composed of one each of the four different types SNARE domains (Qa, Qb, Qc, and R)) mediates MEMBRANE FUSION. Following membrane fusion SNARE complexes are dissociated by the NSFs (N-ETHYLMALEIMIDE-SENSITIVE FACTORS), in conjunction with SOLUBLE NSF ATTACHMENT PROTEIN, i.e., SNAPs (no relation to SNAP 25.) SNAP Receptor,SNARE Protein,NSF Attachment Protein Receptor,Receptor, SNAP,SNAP Receptors,SNARE,SNAREs,Soluble N-ethylmaleimide-Sensitive-Factor Attachment Protein Receptor,Target Membrane SNARE Proteins,Target SNARE Proteins,Vesicle SNARE Proteins,Vesicular SNARE Proteins,t-SNARE,tSNAREs,v-SNARE,v-SNAREs,Protein, SNARE,SNARE Proteins, Target,SNARE Proteins, Vesicle,SNARE Proteins, Vesicular,Soluble N ethylmaleimide Sensitive Factor Attachment Protein Receptor,v SNAREs
D050766 Qb-SNARE Proteins A subfamily of Q-SNARE PROTEINS which occupy the same position in the SNARE complex as the N-terminal SNARE domain of SNAP-25 and which also are most similar to the N-terminal region of SNAP-25 in their AMINO ACID SEQUENCE. Qb-SNAREs,Qb SNARE Proteins,Qb SNAREs

Related Publications

Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
December 2008, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
January 2023, Methods in molecular biology (Clifton, N.J.),
Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
August 2016, eLife,
Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
January 2014, Journal of cell science,
Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
September 2016, Journal of cell science,
Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
June 2006, Nature,
Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
September 1997, FEBS letters,
Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
June 2013, The Journal of cell biology,
Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
December 1998, Cell,
Kumi Matsuura-Tokita, and Masaki Takeuchi, and Akira Ichihara, and Kenta Mikuriya, and Akihiko Nakano
September 2011, Cold Spring Harbor protocols,
Copied contents to your clipboard!