Induction of polymorphonuclear leukocyte response by human cytomegalovirus. 2006

Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
Department of Medicine, Center for Molecular Medicine, L8:03, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.

Neutrophils are important in the defense against bacterial infections, by ingesting and killing invading microorganisms. Because of the higher incidence of bacterial infections in patients with active human cytomegalovirus (HCMV) infections, we hypothesized that HCMV-infected neutrophils were inefficient in eliminating the bacteria. Therefore, we mock infected or infected neutrophils with HCMV by contact with HCMV-infected human pulmonary artery endothelial cells. We found that HCMV infection without N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation increased the surface expression of CD11b to the same extent as fMLP stimulation of mock infected cells. Also, HCMV-infected neutrophils became more efficient in phagocytosing serum opsonized yeast particles than mock infected cells. Furthermore, we observed an increase in intracellular free calcium and chemiluminescence in HCMV-infected cells, in response to fMLP compared to fMLP-treated mock cells. We also found that apoptosis was significantly inhibited in HCMV-infected neutrophils. In conclusion, our results suggest that neutrophils become more effective in performing their effector functions when infected with HCMV. Thus, the higher incidence of bacterial infections in HCMV patients might not be due directly to a dysfunction in the neutrophils. Instead, the fact that apoptosis is inhibited may cause over-reactive neutrophils to remain in the tissues, where they will start leaking their contents, damaging the tissues and contributing to inflammatory processes.

UI MeSH Term Description Entries
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003586 Cytomegalovirus Infections Infection with CYTOMEGALOVIRUS, characterized by enlarged cells bearing intranuclear inclusions. Infection may be in almost any organ, but the salivary glands are the most common site in children, as are the lungs in adults. CMV Inclusion,CMV Inclusions,Congenital CMV Infection,Congenital Cytomegalovirus Infection,Cytomegalic Inclusion Disease,Cytomegalovirus Colitis,Cytomegalovirus Inclusion,Cytomegalovirus Inclusion Disease,Cytomegalovirus Inclusions,Inclusion Disease,Perinatal CMV Infection,Perinatal Cytomegalovirus Infection,Renal Tubular Cytomegalovirus Inclusion,Renal Tubular Cytomegalovirus Inclusions,Salivary Gland Virus Disease,Severe Cytomegalovirus Infection,Severe Cytomegalovirus Infections,Infections, Cytomegalovirus,CMV Infection, Congenital,CMV Infection, Perinatal,Colitis, Cytomegalovirus,Congenital CMV Infections,Congenital Cytomegalovirus Infections,Cytomegalic Inclusion Diseases,Cytomegalovirus Colitides,Cytomegalovirus Inclusion Diseases,Cytomegalovirus Infection,Cytomegalovirus Infection, Congenital,Cytomegalovirus Infection, Perinatal,Cytomegalovirus Infection, Severe,Cytomegalovirus Infections, Severe,Disease, Cytomegalic Inclusion,Disease, Cytomegalovirus Inclusion,Diseases, Cytomegalovirus Inclusion,Inclusion Disease, Cytomegalic,Inclusion Disease, Cytomegalovirus,Inclusion Diseases,Inclusion Diseases, Cytomegalovirus,Inclusion, CMV,Inclusion, Cytomegalovirus,Infection, Congenital CMV,Infection, Congenital Cytomegalovirus,Infection, Cytomegalovirus,Infection, Perinatal CMV,Infection, Perinatal Cytomegalovirus,Infection, Severe Cytomegalovirus,Perinatal CMV Infections,Perinatal Cytomegalovirus Infections
D003587 Cytomegalovirus A genus of the family HERPESVIRIDAE, subfamily BETAHERPESVIRINAE, infecting the salivary glands, liver, spleen, lungs, eyes, and other organs, in which they produce characteristically enlarged cells with intranuclear inclusions. Infection with Cytomegalovirus is also seen as an opportunistic infection in AIDS. Herpesvirus 5, Human,Human Herpesvirus 5,Salivary Gland Viruses,HHV 5,Herpesvirus 5 (beta), Human,Cytomegaloviruses,Salivary Gland Virus,Virus, Salivary Gland,Viruses, Salivary Gland
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
January 1986, Medicina,
Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
March 1979, Clinical immunology and immunopathology,
Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
June 1992, Journal of leukocyte biology,
Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
February 1987, Immunopharmacology,
Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
January 1986, International archives of allergy and applied immunology,
Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
June 1990, Antimicrobial agents and chemotherapy,
Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
January 1984, Journal of immunopharmacology,
Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
July 1990, Infection and immunity,
Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
May 1987, Biochemical pharmacology,
Petra Jerström Skarman, and Afsar Rahbar, and Xun Xie, and Cecilia Söderberg-Nauclér
October 1984, Journal of pharmaceutical sciences,
Copied contents to your clipboard!