The extrinsic and intrinsic apoptotic pathways are differentially affected by temperature upstream of mitochondrial damage. 2006

Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, California, USA.

It is well known that mild hypothermia prevents neuronal cell death following cerebral ischemia, although it can also cause apoptosis in other cell types. Thus, incubation at room temperature (RT) has been shown to induce apoptosis in hematopoietic cells, including Jurkat T leukemia cells. To further understand the apoptotic events that can be activated at RT, we compared the induction of apoptosis by several apoptotic insults in Jurkat cells stimulated at 37 degrees C or RT. Retinoid-related molecules, which induce apoptosis via the intrinsic pathway, failed to induce apoptosis when cells were treated at RT, as determined by various apoptotic parameters including cytochrome c release and activation of caspase 3. In contrast, most apoptotic events were enhanced by lower temperatures when cells were stimulated with anti-Fas antibody via the extrinsic pathway. Ultraviolet radiation produced partial effects at RT, correlating with its capacity to activate both pathways. Our results indicate that the core caspase machinery is operational under mild hypothermia conditions. Experiments using purified recombinant caspases and cell-free assays confirmed that caspases are fully functional at RT. Other hallmark events of apoptosis, such as phosphatidylserine externalization and formation of apoptotic bodies were variably affected by RT in a stimulus-dependent manner, suggesting the existence of critical steps that are sensitive to temperature. Thus, analysis of apoptosis at RT might be useful to (i) discriminate between the extrinsic and intrinsic pathways in Jurkat cells treated with prospective stimuli, and (ii) to unravel temperature-sensitive steps of apoptotic signaling cascades.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045304 Cytochromes c Cytochromes of the c type that are found in eukaryotic MITOCHONDRIA. They serve as redox intermediates that accept electrons from MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX III and transfer them to MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX IV. Cytochrome c,Ferricytochrome c,Ferrocytochrome c,Apocytochrome C
D053148 Caspase 3 A short pro-domain caspase that plays an effector role in APOPTOSIS. It is activated by INITIATOR CASPASES such as CASPASE 9. Isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA. CASP3,Apopain,Caspase-3,Pro-Caspase-3,Procaspase-3,Pro Caspase 3,Procaspase 3
D053181 Caspase 8 A long pro-domain caspase that contains a death effector domain in its pro-domain region. Caspase 8 plays a role in APOPTOSIS by cleaving and activating EFFECTOR CASPASES. Activation of this enzyme can occur via the interaction of its N-terminal death effector domain with DEATH DOMAIN RECEPTOR SIGNALING ADAPTOR PROTEINS. CAP4 Protease,Caspase-8,FLICE Protein,MACH Protein,Mch5 Protease,Pro-Caspase-8,Procaspase-8,Pro Caspase 8,Procaspase 8

Related Publications

Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
March 2009, Biochemical and biophysical research communications,
Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
August 2011, Neurochemistry international,
Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
April 2017, Naunyn-Schmiedeberg's archives of pharmacology,
Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
August 2019, Cerebellum (London, England),
Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
January 2015, Systems biology in reproductive medicine,
Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
May 2006, American journal of physiology. Renal physiology,
Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
November 2005, Cell death and differentiation,
Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
September 2015, Journal of biochemical and molecular toxicology,
Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
January 2017, Anticancer research,
Francisco J López-Hernández, and María A Ortiz, and F Javier Piedrafita
November 2016, International journal of molecular sciences,
Copied contents to your clipboard!