Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. 1991

E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
Department of Cardiology, Leiden University Hospital, The Netherlands.

The effects of mechanical changes in loading conditions on the left ventricular end-systolic pressure-volume relation (ESPVR) were studied in nine open-chest dogs, including three dogs studied before and after beta-adrenergic blockade. Left ventricular pressure was measured with a micromanometer, and left ventricular volume was measured with a conductance catheter. ESPVRs were obtained by increasing left atrial inflow over wide volume ranges (as much as threefold) under three different conditions: control or high or low aortic impedance. High impedance was obtained by occlusion of the descending aorta, and low impedance was obtained by a shunt between the subclavian artery and the left atrium. In the unblocked animals in 21 of 28 runs, a second-order polynomial equation gave a better fit for the ESPVR than a linear relation. To quantify the effects of the changes in aortic impedance on the ESPVR, we calculated from the quadratic equation its volume intercept (V18) and its local slope (E18) at an end-systolic pressure (Pes) of 18 kPa. In the unblocked animals, a statistically significant difference was found in V18 between low impedance (21.50 +/- 6.27 ml) and high impedance (14.10 +/- 8.98 ml; p less than 0.005) and between control (19.14 +/- 9.58 ml) and high impedance (p less than 0.05). In most dogs, E18 was increased at high and decreased at low impedance, but not significantly. In the additional experiments with beta-blockade, the nonlinearity diminished somewhat, but the load dependency of the ESPVR remained present after beta-blockade because the same leftward shift of the ESPVR with high aortic impedance was found. Two other relations, namely, of dP/dtmax and of stroke work versus end-diastolic volume, were also investigated, which on the whole showed the same behavior as the ESPVR. These results indicate that the ESPVR and dP/dtmax-Ved and stroke work-end-diastolic volume relations, when studied over a wide volume range, are nonlinear and that changes in loading conditions influence indexes of contractility derived from these relations, especially the volume intercepts, in such a way that an increase in aortic impedance may be interpreted as an increase in contractility. Blocking the beta-adrenergic receptors did not influence the load dependency of the ESPVR but, in some cases, tended to decrease the nonlinearity in concordance with the relation between contractility and nonlinearity in isolated hearts.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D014655 Vascular Resistance The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT. Peripheral Resistance,Total Peripheral Resistance,Pulmonary Vascular Resistance,Systemic Vascular Resistance,Peripheral Resistance, Total,Resistance, Peripheral,Resistance, Pulmonary Vascular,Resistance, Systemic Vascular,Resistance, Total Peripheral,Resistance, Vascular,Vascular Resistance, Pulmonary,Vascular Resistance, Systemic
D016277 Ventricular Function, Left The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance. Left Ventricular Function,Function, Left Ventricular,Functions, Left Ventricular,Left Ventricular Functions,Ventricular Functions, Left

Related Publications

E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
May 1987, The American journal of physiology,
E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
May 1977, Circulation research,
E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
June 1998, The Japanese journal of physiology,
E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
May 1982, Circulation research,
E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
September 1988, Japanese heart journal,
E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
February 1979, Circulation research,
E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
June 1988, Circulation research,
E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
January 1991, Circulation,
E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
January 1981, The Kurume medical journal,
E T van der Velde, and D Burkhoff, and P Steendijk, and J Karsdon, and K Sagawa, and J Baan
January 1976, Archives internationales de physiologie et de biochimie,
Copied contents to your clipboard!