Prostaglandin endoperoxide synthase (cyclooxygenase) mRNA and protein production in mouse myoblasts and a differentiation-defective variant. 1991

S M Steiner, and J C Keutzer, and R R Hirschhorn
Molecular and Cell Biology, T. H. Morgan School of Biological Sciences, University of Kentucky, Lexington 40506-0225.

Northern blot analysis revealed that a differentiation-defective variant (DD-1) of MM14 mouse myoblasts has seven times the prostaglandin endoperoxide synthase mRNA than the parental MM14 myoblasts. There was an even greater increase in the level of prostaglandin endoperoxide synthase protein in the DD-1 cells as compared to that in the MM14 myoblasts. In fact, prostaglandin endoperoxide synthase was not detectable by Western blot analysis of extracts from MM14 myoblasts. Since prostaglandin endoperoxide synthase has been reported to be a gene whose expression is induced transiently, i.e., growth-regulated, upon mitogen stimulation of quiescent cells, the RNA abundance of other growth-regulated genes was examined including: KC, JE, c-myc, 1B6, and vimentin. Northern blot analysis revealed that the mRNA abundance of JE, KC, and c-myc is 12-, 17-, and 2-fold higher, respectively, in growing DD-1 cells than in growing MM14 myoblasts. In contrast, there was little difference in the mRNA abundance of 1B6 and vimentin. These results are consistent with the hypothesis that increases in the levels of expression of prostaglandin endoperoxide synthase and some growth-regulated genes are integral to the expression of the differentiation-defective phenotype and may in fact contribute to this phenotype.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

S M Steiner, and J C Keutzer, and R R Hirschhorn
April 1995, Prostaglandins, leukotrienes, and essential fatty acids,
S M Steiner, and J C Keutzer, and R R Hirschhorn
December 1993, Biochemical and biophysical research communications,
S M Steiner, and J C Keutzer, and R R Hirschhorn
January 1989, Advances in prostaglandin, thromboxane, and leukotriene research,
S M Steiner, and J C Keutzer, and R R Hirschhorn
May 1994, The Journal of biological chemistry,
S M Steiner, and J C Keutzer, and R R Hirschhorn
November 1990, The Journal of biological chemistry,
S M Steiner, and J C Keutzer, and R R Hirschhorn
February 1994, Biochemical and biophysical research communications,
S M Steiner, and J C Keutzer, and R R Hirschhorn
January 1992, Biochemical and biophysical research communications,
S M Steiner, and J C Keutzer, and R R Hirschhorn
February 1995, Archives of biochemistry and biophysics,
S M Steiner, and J C Keutzer, and R R Hirschhorn
February 1994, The Journal of biological chemistry,
Copied contents to your clipboard!