Overcoming HIV drug resistance through rational drug design based on molecular, biochemical, and structural profiles of HIV resistance. 2006

P D Yin, and D Das, and H Mitsuya
Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, 10 Center Drive, Building 10, Room 5A11, Bethesda, ML 20892, USA.

There are 20 available drugs for the treatment of human immunodeficiency virus (HIV) infection. With a single exception, all of these drugs inhibit either HIV reverse transcriptase or protease. Reverse transcriptase inhibitors can be further categorized as nucleoside/nucleotide analogs or non-nucleoside reverse transcriptase inhibitors. Resistance that has emerged against all available antiretroviral drugs represents a major challenge in the therapy of HIV infection. Nevertheless, extensive analysis of the molecular and structural mechanisms by which such mutations confer resistance has accumulated over the years. This understanding has driven the development and refinement of novel compounds capable of maintaining antiviral activity against both wild-type and drug-resistant HIV strains. The molecular, biochemical, and structural profiles of reverse transcriptase inhibitor and protease inhibitor resistance are discussed. In addition, how this knowledge has been utilized to generate a new generation of antiviral drugs with activity against drug-resistant HIV is reviewed.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D015658 HIV Infections Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS). HTLV-III Infections,HTLV-III-LAV Infections,T-Lymphotropic Virus Type III Infections, Human,HIV Coinfection,Coinfection, HIV,Coinfections, HIV,HIV Coinfections,HIV Infection,HTLV III Infections,HTLV III LAV Infections,HTLV-III Infection,HTLV-III-LAV Infection,Infection, HIV,Infection, HTLV-III,Infection, HTLV-III-LAV,Infections, HIV,Infections, HTLV-III,Infections, HTLV-III-LAV,T Lymphotropic Virus Type III Infections, Human
D017320 HIV Protease Inhibitors Inhibitors of HIV PROTEASE, an enzyme required for production of proteins needed for viral assembly. HIV Protease Inhibitor,Inhibitor, HIV Protease,Inhibitors, HIV Protease,Protease Inhibitor, HIV,Protease Inhibitors, HIV
D054303 HIV Reverse Transcriptase A reverse transcriptase encoded by the POL GENE of HIV. It is a heterodimer of 66 kDa and 51 kDa subunits that are derived from a common precursor protein. The heterodimer also includes an RNAse H activity (RIBONUCLEASE H, HUMAN IMMUNODEFICIENCY VIRUS) that plays an essential role the viral replication process. Reverse Transcriptase, HIV,Reverse Transcriptase, Human Immunodeficiency Virus,Transcriptase, HIV Reverse

Related Publications

P D Yin, and D Das, and H Mitsuya
April 1998, Journal of medicinal chemistry,
P D Yin, and D Das, and H Mitsuya
September 2025, Bioorganic chemistry,
P D Yin, and D Das, and H Mitsuya
January 2002, Annual review of medicine,
P D Yin, and D Das, and H Mitsuya
December 1992, Diabetologia,
P D Yin, and D Das, and H Mitsuya
June 2025, Medical oncology (Northwood, London, England),
P D Yin, and D Das, and H Mitsuya
December 2001, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
P D Yin, and D Das, and H Mitsuya
October 2019, Proceedings of the National Academy of Sciences of the United States of America,
P D Yin, and D Das, and H Mitsuya
March 2000, Acta crystallographica. Section D, Biological crystallography,
P D Yin, and D Das, and H Mitsuya
January 2018, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!