Studies on convulsants in the isolated frog spinal cord. II. Effects on root potentials. 1975

J L Barker, and R A Nicoll, and A Padjen

1. In the isolated frog spinal cord picrotoxin, bicuculline, and strychnine were evaluated for their effects on synaptically induced root potentials recorded by the sucrose gap technique. 2. Picrotoxin (greater than 10- minus 4 M) completely blocked the dorsal root potential (DRP) elicited by stimulating the ventral root of the same segment (VR-DRP). Although picrotoxin antagonized the DRP elicited by stimulation of either an adjacent dorsal root (DR-DRP) or the lateral column (LC-DRP), a slower component to these potentials appeared and increased in size as the concentration of picrotoxin was increased. Thus picrotoxin brings out a later, picrotoxin resistant component to the DR-DRP and LC-DRP. 3. Strychnine (10- minus 8-10- minus 5 M) reduced and abolished the VR-DRP without prolongation and progressively increased and prolonged the DR-DRP (and LC-DRP) and the DR-VRP. Strychnine in higher concentrations (greater than 10- minus 4 M) also reduced the amplitude and prolonged the duration of the compound action potential of afferent fibres. 4. These results combined with those presented in the preceding paper (Barker, Nicoll & Padjen, 1975) suggest that (1) a GABA-like transmitter mediates the final step in the DR-DRP and LC-DRP pathways and that (2) either taurine or beta-alanine may mediate the last step in the VR-DRP pathway.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D003292 Convulsants Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools. Convulsant,Convulsant Effect,Convulsant Effects,Effect, Convulsant,Effects, Convulsant
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine

Related Publications

J L Barker, and R A Nicoll, and A Padjen
January 1975, Neirofiziologiia = Neurophysiology,
J L Barker, and R A Nicoll, and A Padjen
May 1976, Brain research,
J L Barker, and R A Nicoll, and A Padjen
January 1978, Neuroscience,
J L Barker, and R A Nicoll, and A Padjen
December 1988, Neuroscience letters,
J L Barker, and R A Nicoll, and A Padjen
January 1980, Osaka city medical journal,
J L Barker, and R A Nicoll, and A Padjen
January 1986, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
J L Barker, and R A Nicoll, and A Padjen
September 1990, Neuroscience letters,
Copied contents to your clipboard!