Inhibition of adrenergic neurotransmission in isolated veins of the dog by potassium ions. 1975

R R Lorenz, and P M Vanhoutte

1. In the intact organism, an increase in K+ concentration decreases the reactivity of blood vessels to sympathetic stimulation. The present experiments were designed to determine whether or not K+ interferes with adrenergic neurotransmission. 2. Helical strips cut from dogs' saphenous veins were incubated (4 hr) in Krebs-Ringer solution containing [7-3H]norepinephrine (5 times 10(-8) g/ml). The preparations were mounted for superfusion and isometric tension recording; the superfusate was collected for estimation of total radioactivity and for chromatographic separation of 3H-labelled norepinephrine and metabolites. 3. Supramaximal electric stimulation (5 Hz, 9 V, 2 msec) increased the tension and the [3H]norepinephrine efflux. Increasing the K+ concentration from 5-9 to 1, 15, and 20 m-equiv/l. caused a progressive depression of these contractions and diminished the total 3H efflux in proportion to the relaxation; the decrease in 3H efflux reflected a decrease in intact [3H]norepinephrine. The same increase in K+ concentration did not alter basal tension or basal 3H efflux. 4. Addition of tyramine (4 times 10(-6) g/ml. min) to the superfusate augmented both the tension and the efflux, but these actions were not depresesd by increasing the K+ concentration. 5. Cocaine, phentolamine, and phenoxybenzamine did not prevent the depression by K+ of the response to electric stimulation. 6. These experiments show that K+ causes relaxation of venous smooth muscle constricted by sympathetic stimulation and does so by inhibiting the release of norepinephrine from nerve endings. By contrast, K+ does not inhibit norepinephrine release in response to tyramine. 7. During submaximal electric stimulation (5 Hz, 1-8--3 V, 2 msec), increasing the K+ concentration from 5-9 to 10 and 15 m-equiv/l. potentiated the contractions and increased the [3H]norepinephrine efflux; at 20 m-equil/l, K+ caused transient increases in tension and 3H efflux followed by relaxation and decreased norepinephrine release. After addition of cocaine (10(-5) g/ml. min), K+ only caused relaxation and decrease in 3H efflux, showing that, in addition to inhibition of norepinephrine release, K+ also inhibits the reuptake process. 8. In higher concentrations (40 m-equil/l.), K+ caused both a liberation of norepinephrine and a direct activation of the smooth muscle cells.

UI MeSH Term Description Entries
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R R Lorenz, and P M Vanhoutte
July 1980, Archives internationales de pharmacodynamie et de therapie,
R R Lorenz, and P M Vanhoutte
January 1977, The Journal of pharmacology and experimental therapeutics,
R R Lorenz, and P M Vanhoutte
August 1981, Journal of applied physiology: respiratory, environmental and exercise physiology,
R R Lorenz, and P M Vanhoutte
January 1969, European journal of pharmacology,
R R Lorenz, and P M Vanhoutte
February 1973, The Journal of pharmacology and experimental therapeutics,
R R Lorenz, and P M Vanhoutte
March 1974, Circulation research,
R R Lorenz, and P M Vanhoutte
October 1991, European journal of pharmacology,
R R Lorenz, and P M Vanhoutte
September 1965, Archives internationales de physiologie et de biochimie,
R R Lorenz, and P M Vanhoutte
February 1981, The Journal of physiology,
R R Lorenz, and P M Vanhoutte
July 1978, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!