The membrane action of antidiuretic hormone (ADH) on toad urinary bladder. 1975

R J Pietras, and E M Wright

Radioactive tracer and electrical techniques were used to study the transport of nonelectrolytes and sodium, respectively, across toad urinary bladders in the presence and absence of ADH. The permeability of lipophilic molecules was roughly proportional to bulk phase oil/water partition coefficients both in the presence and absence of hormone; i.e., ADH elicited a general nonselective increase in the permeation of all nine solutes tested. The branched nonelectrolyte, isobutyramide, was less permeable than its straight-chain isomer, n-butyramide, in control tissues. ADH reduced the discrimination between these structural isomers. Hydrophilic solutes permeated more rapidly than expected. In the presence of hormone, there was no change in the permeation of large hydrophilic solutes considered to move via an extracellular pathway, but there was a marked increase in the permeability of water and other small hydrophilic solutes. Collectively, these results suggest that ADH acts to increase the motional freedom or fluidity of lipids in the cell membrane which is considered to be the preferred pathway for the permeation of lipophilic and small hydrophilic molecules. At concentrations of cAMP and ADH which elicit equivalent increments in the shortcircuit current, the effects of these agents on nonelectrolyte transport and membrane electrical conductance are divergent. Such observations suggest that some membrane effects of ADH may not be directly dependent upon cAMP. ADH in the mucosal solution increased the permeability of the toad bladder when the surface charge on the outer surface of the apical membrane was screened with the polyvalent cation, La-3+. These experiments emphasize that interaction of ADH with membranes of toad urinary bladder may account for at least some effects of this hormone.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000438 Alcohols Alkyl compounds containing a hydroxyl group. They are classified according to relation of the carbon atom: primary alcohols, R-CH2OH; secondary alcohols, R2-CHOH; tertiary alcohols, R3-COH. (From Grant & Hackh's Chemical Dictionary, 5th ed)

Related Publications

R J Pietras, and E M Wright
February 1983, The American journal of physiology,
R J Pietras, and E M Wright
August 1986, The American journal of physiology,
R J Pietras, and E M Wright
January 1984, The Journal of membrane biology,
R J Pietras, and E M Wright
September 1986, The Journal of clinical investigation,
R J Pietras, and E M Wright
June 1975, The Journal of endocrinology,
R J Pietras, and E M Wright
March 1985, The Journal of clinical investigation,
R J Pietras, and E M Wright
January 1979, The American journal of physiology,
R J Pietras, and E M Wright
August 1972, Biochimica et biophysica acta,
Copied contents to your clipboard!