Induction of long-term potentiation without participation of N-methyl-D-aspartate receptors in kitten visual cortex. 1991

Y Komatsu, and S Nakajima, and K Toyama
Department of Physiology, Kyoto Prefectural University of Medicine, Japan.

1. Intracellular recording was made from layer II-III cells in slice preparations of kitten (30-40 days old) visual cortex. Low-frequency (0.1 Hz) stimulation of white matter (WM) usually evoked an excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). The postsynaptic potentials (PSPs) showed strong dependence on stimulus frequency. Early component of EPSP and IPSP evoked by weak stimulation both decreased monotonically at frequencies greater than 0.5-1 Hz. Strong stimulation similarly depressed the early EPSP at higher frequencies (greater than 2 Hz) and replaced the IPSP with a late EPSP, which had a maximum amplitude in the stimulus frequency range of 2-5 Hz. 2. Very weak WM stimulation sometimes evoked EPSPs in isolation from IPSPs. The falling phase of the EPSP revealed voltage dependence characteristic to the responses mediated by N-methyl-D-aspartate (NMDA) receptors and was depressed by application of an NMDA antagonist DL-2-amino-5-phosphonovalerate (APV), whereas the rising phase of the EPSP was insensitive to APV. 3. The early EPSPs followed by IPSPs were insensitive to APV but were replaced with a slow depolarizing potential by application of a non-NMDA antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX), indicating that the early EPSP is mediated by non-NMDA receptors. The slow depolarization was mediated by NMDA receptors because it was depressed by membrane hyperpolarization or addition of APV. 4. The late EPSP evoked by higher-frequency stimulation was abolished by APV, indicating that it is mediated by NMDA receptors, which are located either on the recorded cell or on presynaptic cells to the recorded cells. 5. Long-term potentiation (LTP) of EPSPs was examined in cells perfused with solutions containing 1 microM bicuculline methiodide (BIM), a gamma-aminobutyric acid (GABA) antagonist. WM was stimulated at 2 Hz for 15 min as a conditioning stimulus to induce LTP, and the resultant changes were tested by low-frequency (0.1 Hz) stimulation of WM. 6. LTP of early EPSPs occurred in more than one-half of the cells (8/13) after strong conditioning stimulation. The rising slope of the EPSP was increased 1.6 times on average. 7. To test involvement of NMDA receptors in the induction of LTP in the early EPSP, the effect of conditioning stimulation was studied in a solution containing 100 microM APV, which was sufficient to block completely synaptic transmission mediated by NMDA receptors. LTP occurred in the same frequency and magnitude as in control solution.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011810 Quinoxalines Quinoxaline
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D015763 2-Amino-5-phosphonovalerate The D-enantiomer is a potent and specific antagonist of NMDA glutamate receptors (RECEPTORS, N-METHYL-D-ASPARTATE). The L form is inactive at NMDA receptors but may affect the AP4 (2-amino-4-phosphonobutyrate; APB) excitatory amino acid receptors. 2-Amino-5-phosphonopentanoic Acid,2-Amino-5-phosphonovaleric Acid,2-APV,2-Amino-5-phosphonopentanoate,5-Phosphononorvaline,d-APV,dl-APV,2 Amino 5 phosphonopentanoate,2 Amino 5 phosphonopentanoic Acid,2 Amino 5 phosphonovalerate,2 Amino 5 phosphonovaleric Acid,5 Phosphononorvaline

Related Publications

Y Komatsu, and S Nakajima, and K Toyama
July 1989, The Journal of physiology,
Y Komatsu, and S Nakajima, and K Toyama
January 1990, The European journal of neuroscience,
Y Komatsu, and S Nakajima, and K Toyama
April 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Y Komatsu, and S Nakajima, and K Toyama
September 2015, Brain research,
Y Komatsu, and S Nakajima, and K Toyama
December 1984, Brain research,
Y Komatsu, and S Nakajima, and K Toyama
January 1990, Experimental brain research,
Y Komatsu, and S Nakajima, and K Toyama
January 1988, Journal of neurophysiology,
Y Komatsu, and S Nakajima, and K Toyama
February 1992, Journal of neurophysiology,
Copied contents to your clipboard!