Laser scanning cytometry: principles and applications. 2006

Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
The Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA.

The laser scanning cytometer (LSC) is the microscope-based cytofluorometer that offers a plethora of analytical capabilities. Multilaser-excited fluorescence emitted from individual cells is measured at several wavelength ranges, rapidly (up to 5000 cells/min), with high sensitivity and accuracy. The following applications of LSC are reviewed: (1) identification of cells that differ in degree of chromatin condensation (e.g., mitotic or apoptotic cells or lymphocytes vs granulocytes vs monocytes); (2) detection of translocation between cytoplasm vs nucleus or nucleoplasm vs nucleolus of regulatory molecules such as NF-kappaB, p53, or Bax; (3) semiautomatic scoring of micronuclei in mutagenicity assays; (4) analysis of fluorescence in situ hybridization; (5) enumeration and morphometry of nucleoli; (6) analysis of phenotype of progeny of individual cells in clonogenicity assay; (7) cell immunophenotyping; (8) visual examination, imaging, or sequential analysis of the cells measured earlier upon their relocation, using different probes; (9) in situ enzyme kinetics and other time-resolved processes; (10) analysis of tissue section architecture; (11) application for hypocellular samples (needle aspirate, spinal fluid, etc.); (12) other clinical applications. Advantages and limitations of LSC are discussed and compared with flow cytometry.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software
D015162 Micronucleus Tests Induction and quantitative measurement of chromosomal damage leading to the formation of micronuclei (MICRONUCLEI, CHROMOSOME-DEFECTIVE) in cells which have been exposed to genotoxic agents or IONIZING RADIATION. Micronucleus Assays,Assay, Micronucleus,Assays, Micronucleus,Micronucleus Assay,Micronucleus Test,Test, Micronucleus,Tests, Micronucleus

Related Publications

Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
June 2002, Cytometry,
Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
January 2006, Methods in molecular biology (Clifton, N.J.),
Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
May 1999, Experimental cell research,
Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
January 2008, Toxicologic pathology,
Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
May 2004, Current protocols in cytometry,
Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
January 1999, Lancet (London, England),
Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
January 2001, Methods in cell biology,
Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
January 2011, Methods in cell biology,
Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
January 1984, Cancer investigation,
Piotr Pozarowski, and Elena Holden, and Zbigniew Darzynkiewicz
January 1985, Comptes rendus des seances de la Societe de biologie et de ses filiales,
Copied contents to your clipboard!