Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. 2006

C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
Cancer Research UK Bioinformatics Group, Paterson Institute for Cancer Research, Wilmslow Road, Withington, Manchester M20 4BX, UK.

Oestrogen (E) is essential for normal and cancer development in the breast, while anti-oestrogens have been shown to reduce the risk of the disease. However, little is known about the effect of E on gene expression in the normal human breast, particularly when the epithelium and stroma are intact. Previous expression profiles of the response to E have been performed on tumour cell lines, in the absence of stroma. We investigated gene expression in normal human breast tissue transplanted into 9-10-week-old female athymic nude (Balb/c nu/nu) mice. After 2 weeks, when epithelial proliferation is minimal, one-third of the mice were treated with 17beta-oestradiol (E2) to give human luteal-phase levels in the mouse, which we have previously shown to induce maximal epithelial cell proliferation. RNA was isolated from treated and untreated mice, labelled and hybridized to Affymetrix HG-U133A (human) GeneChips. Gene expression levels were generated using BioConductor implementations of the RMA and MAS5 algorithms. E2 treatment was found to represent the largest source of variation in gene expression and cross-species hybridization of mouse RNA from xenograft samples was demonstrated to be negligible. Known E2-responsive genes (such as TFF1 and AREG), and genes thought to be involved in breast cancer metastasis (including mammoglobin, KRT19 and AGR2), were upregulated in response to E treatment. Genes known to be co-expressed with E receptor alpha in breast cancer cell lines and tumours were both upregulated (XBP-1 and GREB1) and downregulated (RARRES1 and GATA3). In addition, genes that are normally expressed in the myoepithelium and extracellular matrix that maintain the tissue microenvironment were also differentially expressed. This suggests that the response to oestrogen in normal breast is highly dependent upon epithelial-stromal/myoepithelial interactions which maintain the tissue microenvironment during epithelial cell proliferation.

UI MeSH Term Description Entries
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D001940 Breast In humans, one of the paired regions in the anterior portion of the THORAX. The breasts consist of the MAMMARY GLANDS, the SKIN, the MUSCLES, the ADIPOSE TISSUE, and the CONNECTIVE TISSUES. Breasts
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014183 Transplantation, Heterologous Transplantation between animals of different species. Xenotransplantation,Heterograft Transplantation,Heterografting,Heterologous Transplantation,Xenograft Transplantation,Xenografting,Transplantation, Heterograft,Transplantation, Xenograft
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
September 2000, European journal of cancer (Oxford, England : 1990),
C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
June 2005, Maturitas,
C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
January 1992, European journal of cancer (Oxford, England : 1990),
C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
January 1997, Acta chirurgica Hungarica,
C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
October 2010, Clinical ophthalmology (Auckland, N.Z.),
C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
January 1954, Texas reports on biology and medicine,
C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
January 1997, British journal of cancer,
C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
December 1993, The Journal of steroid biochemistry and molecular biology,
C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
December 1981, Journal of steroid biochemistry,
C L Wilson, and A H Sims, and A Howell, and C J Miller, and R B Clarke
December 1996, The Journal of steroid biochemistry and molecular biology,
Copied contents to your clipboard!