Molecular chaperones and protein translocation across the Escherichia coli inner membrane. 1991

C A Kumamoto
Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111.

Proteins that are able to translocate across biological membranes assume a loosely folded structure. In this review it is suggested that the loosely folded structure, referred to here as the 'pre-folded conformation', is a particular structure that interacts favourably with components of the export apparatus. Two soluble factors, SecB and GroEL, have been implicated in maintenance of the pre-folded conformation and have been termed 'molecular chaperones'. Results suggest that SecB may be a chaperone that is specialized for binding to exported protein precursors, while GroEL may be a general folding modulator that binds to many intracellular proteins.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011498 Protein Precursors Precursors, Protein
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D018834 Chaperonin 60 A group I chaperonin protein that forms the barrel-like structure of the chaperonin complex. It is an oligomeric protein with a distinctive structure of fourteen subunits, arranged in two rings of seven subunits each. The protein was originally studied in BACTERIA where it is commonly referred to as GroEL protein. Heat-Shock Proteins 60,hsp60 Family,GroEL Protein,GroEL Stress Protein,Heat-Shock Protein 60,hsp60 Protein,Heat Shock Protein 60,Heat Shock Proteins 60

Related Publications

C A Kumamoto
January 1992, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
C A Kumamoto
October 2004, The Journal of biological chemistry,
C A Kumamoto
April 2002, Nihon rinsho. Japanese journal of clinical medicine,
C A Kumamoto
January 1991, Annual review of biochemistry,
Copied contents to your clipboard!