Progressive immune dysfunction in cats experimentally infected with feline immunodeficiency virus. 1991

M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
Department of Medicine, School of Veterinary Medicine, University of California, Davis 95616.

Within 6 months of infection with the Petaluma isolate of feline immunodeficiency virus, specific-pathogen-free domestic cats exhibited a decrease in the percentage and number of circulating CD4+ lymphocytes and in the CD4+/CD8+ T-cell ratio, along with a marginally significant depression of pokeweed mitogen-induced lymphocyte proliferation in vitro. There was no loss of responsiveness to concanavalin A during this stage, and the cats were capable of mounting a satisfactory antibody response to a T-dependent, synthetic polypeptide immunogen. The pokeweed mitogen response deficit became clearly demonstrable by 11 to 12 months postinfection. A decline in the lymphocyte proliferative response to concanavalin A and a diminished ability to mount an in vivo antibody response to the T-dependent immunogen evolved by 25 to 44 months postinfection. Virus infection did not affect the ability of cats to mount an antibody response to a T-independent synthetic polypeptide immunogen. These data indicate that feline immunodeficiency virus produces a slowly progressive deterioration of T-cell function but does not affect the ability of B cells to recognize and respond to a T-independent antigenic stimulus.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011043 Pokeweed Mitogens Proteins isolated from the roots of the pokeweed, Phytolacca americana, that agglutinate some erythrocytes, stimulate mitosis and antibody synthesis in lymphocytes, and induce activation of plasma cells. Lectins, Pokeweed,Pokeweed Lectin,Pokeweed Lectins,Pokeweed Mitogen,Pokeweed Mitogen Isolectin,Isolectin, Pokeweed Mitogen,Lectin, Pokeweed,Mitogen Isolectin, Pokeweed,Mitogen, Pokeweed,Mitogens, Pokeweed
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens

Related Publications

M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
March 2010, Veterinary immunology and immunopathology,
M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
November 1990, Journal of virology,
M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
September 1994, The Journal of infectious diseases,
M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
September 1997, AIDS research and human retroviruses,
M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
November 1991, Journal of the American Veterinary Medical Association,
M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
June 1992, Veterinary immunology and immunopathology,
M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
June 1993, The Journal of veterinary medical science,
M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
September 1996, The Journal of veterinary medical science,
M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
October 1990, Veterinary immunology and immunopathology,
M Torten, and M Franchini, and J E Barlough, and J W George, and E Mozes, and H Lutz, and N C Pedersen
October 1994, Journal of acquired immune deficiency syndromes,
Copied contents to your clipboard!