Initiation of simian virus 40 DNA synthesis in vitro. 1991

P A Bullock, and Y S Seo, and J Hurwitz
Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Institute, New York, New York 10021.

Simian virus 40 (SV40) T antigen can efficiently initiate SV40 origin-dependent DNA synthesis in crude extracts of HeLa cells. Therefore, initiation of SV40 DNA synthesis can be analyzed in detail. We present evidence that antibodies which neutralize proliferating cell nuclear antigen (PCNA) inhibit but do not abolish pulse-labeling of nascent DNA. The lengths of DNA products formed after a 5-s pulse in the absence and presence of anti-PCNA serum averaged 150 and 34 nucleotides, respectively. The small DNAs formed in the presence of anti-PCNA serum underwent little or no increase in size during further incubation periods. The addition of PCNA to reaction mixtures inhibited with anti-PCNA serum largely reversed the inhibitory effect of the antiserum. The small nascent DNAs formed in the presence or absence of anti-PCNA serum products arose from the replication of lagging strands. These results suggest that a PCNA-dependent elongation reaction participates in the synthesis of lagging strands as well as leading strands. We also present evidence that in crude extracts of HeLa cells, DNA synthesis generally does not initiate within the core origin. Initiation of DNA synthesis outside of a genetically defined origin region has not been previously described in a eukaryotic replication system but appears to be a common feature of initiation events in many prokaryotic organisms. Additional results presented indicate that in the absence of nucleoside triphosphates other than ATP, the preinitiation complex remains within or close to the SV40 origin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

P A Bullock, and Y S Seo, and J Hurwitz
November 1983, Journal of virology,
P A Bullock, and Y S Seo, and J Hurwitz
August 1994, Molecular and cellular biology,
P A Bullock, and Y S Seo, and J Hurwitz
January 1997, Critical reviews in biochemistry and molecular biology,
P A Bullock, and Y S Seo, and J Hurwitz
August 1987, The Journal of biological chemistry,
P A Bullock, and Y S Seo, and J Hurwitz
September 1989, Molecular and cellular biology,
P A Bullock, and Y S Seo, and J Hurwitz
December 1976, Proceedings of the National Academy of Sciences of the United States of America,
P A Bullock, and Y S Seo, and J Hurwitz
March 1999, Molecular and cellular biology,
P A Bullock, and Y S Seo, and J Hurwitz
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
P A Bullock, and Y S Seo, and J Hurwitz
October 1987, Nucleic acids research,
P A Bullock, and Y S Seo, and J Hurwitz
June 1985, Molecular and cellular biology,
Copied contents to your clipboard!