Inhibition of epidermal Langerhans cell function by low dose ultraviolet B radiation. Ultraviolet B radiation selectively modulates ICAM-1 (CD54) expression by murine Langerhans cells. 1991

A Tang, and M C Udey
Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Immunosuppressive effects of low levels of ultraviolet B (UVB) radiation on cutaneous immune responses have been attributed to deleterious effects of UVB radiation on epidermal Langerhans cells (LC). To determine how UVB radiation modulates LC function we examined the effect of in vitro UVB exposure on LC accessory cell activity and surface phenotype. Exposure of BALB/c murine epidermal cells to low dose (less than or equal to 200 J/m2) UVB radiation in vitro inhibited their ability to support the mitogenic response of unstimulated, accessory cell-depleted splenic T cells to anti-CD3 mAb. LC accessory cell activity was also inhibited when LC were exposed to UVB radiation in situ, although several-fold higher doses of UVB radiation were required to achieve complete inhibition of LC function. This dose-dependent inhibition was mediated through a direct effect on LC that could not be reversed by IL-1 or IL-6 alone or in combination, or granulocyte-macrophage-CSF. TNF-alpha did not inhibit LC accessory cell function in this assay and anti-TNF-alpha neutralizing antibodies did not reverse the inhibitory effects of UVB radiation. UVB irradiated LC failed to participate in the anti-CD3-dependent clustering that normally occurs between T cells and LC during the proliferative response of murine T cells to anti-CD3 mAb, suggesting that UV radiation may interfere with accessory cell function by preventing intercellular adhesion. Two-color flow cytometric studies revealed low levels of the ICAM-1 on freshly isolated LC and some keratinocytes. ICAM-1 expression on LC increased 15 to 20-fold within the first 24 h in vitro and continued to increase during a 72-h culture period. The integrin LFA-1 was not identified on freshly isolated or cultured LC but was detected on responding T cells. Prior exposure of LC to UVB radiation (50 or 100 J/m2) inhibited the increase in ICAM-1 expression that normally occurs in vitro by up to 70% whereas surface levels of class II MHC Ag, CD45 and Fc-gamma receptors were not affected. Blocking studies revealed that anti-CD3 induced T cell proliferation and T cell-LC cluster formation was inhibited by both anti-LFA-1 and anti-ICAM-1 mAb suggesting that ICAM-1 expressed on LC must bind to LFA-1 on T cells to facilitate proliferative responses of T cells to anti-CD3 mAb. We conclude that the in vitro inhibitory effects of low dose UVB radiation on LC accessory function may result because UVB radiation prevents upregulation of ICAM-1 expression by LC in culture.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007801 Langerhans Cells Recirculating, dendritic, antigen-presenting cells containing characteristic racket-shaped granules (Birbeck granules). They are found principally in the stratum spinosum of the EPIDERMIS and are rich in Class II MAJOR HISTOCOMPATIBILITY COMPLEX molecules. Langerhans cells were the first dendritic cell to be described and have been a model of study for other dendritic cells (DCs), especially other migrating DCs such as dermal DCs and INTERSTITIAL DENDRITIC CELLS. Langerhans Cell,Dendritic Cells, Dermal,Dendritic Cells, Epidermal,Dendritic Cells, Skin,Dermal Dendritic Cells,Epidermal Dendritic Cells,Skin Dendritic Cells,Cell, Dermal Dendritic,Cell, Epidermal Dendritic,Cell, Langerhans,Cell, Skin Dendritic,Cells, Dermal Dendritic,Cells, Epidermal Dendritic,Cells, Langerhans,Cells, Skin Dendritic,Dendritic Cell, Dermal,Dendritic Cell, Epidermal,Dendritic Cell, Skin,Dermal Dendritic Cell,Epidermal Dendritic Cell,Skin Dendritic Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D011961 Receptors, Fc Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules. Fc Receptors,Fc Receptor,Receptor, Fc
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens

Related Publications

A Tang, and M C Udey
December 1993, The British journal of dermatology,
A Tang, and M C Udey
November 1999, Journal of immunology (Baltimore, Md. : 1950),
A Tang, and M C Udey
December 2012, International immunopharmacology,
A Tang, and M C Udey
October 1981, Journal of immunology (Baltimore, Md. : 1950),
A Tang, and M C Udey
November 1989, The Journal of dermatologic surgery and oncology,
A Tang, and M C Udey
April 1999, Journal of dermatological science,
A Tang, and M C Udey
January 1995, Advances in experimental medicine and biology,
Copied contents to your clipboard!