Pseudomonas aeruginosa 1244 pilin glycosylation: glycan substrate recognition. 2006

Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15282, USA.

The pilin of Pseudomonas aeruginosa 1244 is glycosylated with an oligosaccharide that is structurally identical to the O-antigen repeating unit of this organism. Concordantly, the metabolic source of the pilin glycan is the O-antigen biosynthetic pathway. The present study was conducted to investigate glycan substrate recognition in the 1244 pilin glycosylation reaction. Comparative structural analysis of O subunits that had been previously shown to be compatible with the 1244 glycosylation machinery revealed similarities among sugars at the presumed reducing termini of these oligosaccharides. We therefore hypothesized that the glycosylation substrate was within the sugar at the reducing end of the glycan precursor. Since much is known of PA103 O-antigen genetics and because the sugars at the reducing termini of the O7 (strain 1244) and O11 (strain PA103) are identical (beta-N-acetyl fucosamine), we utilized PA103 and strains that express lipopolysaccharide (LPS) with a truncated O-antigen subunit to test our hypothesis. LPS from a strain mutated in the wbjE gene produced an incomplete O subunit, consisting only of the monosaccharide at the reducing end (beta-d-N-acetyl fucosamine), indicating that this moiety contained substrate recognition elements for WaaL. Expression of pilAO(1244) in PA103 wbjE::aacC1, followed by Western blotting of extracts of these cells, indicated that pilin produced has been modified by the addition of material consistent with a single N-acetyl fucosamine. This was confirmed by analyzing endopeptidase-treated pilin by mass spectrometry. These data suggest that the pilin glycosylation substrate recognition features lie within the reducing-end moiety of the O repeat and that structures of the remaining sugars are irrelevant.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D005643 Fucose A six-member ring deoxysugar with the chemical formula C6H12O5. It lacks a hydroxyl group on the carbon at position 6 of the molecule. Deoxygalactose,alpha-Fucose,alpha Fucose
D005964 Glucosyltransferases Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Glucosyltransferase
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
October 2002, Molecular microbiology,
Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
January 2006, The Journal of biological chemistry,
Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
July 2001, The Journal of biological chemistry,
Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
June 2002, Infection and immunity,
Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
December 2005, Infection and immunity,
Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
May 1995, Microbiology (Reading, England),
Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
November 2010, Journal of bacteriology,
Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
September 2017, Journal of the American Chemical Society,
Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
September 2015, Microbiology (Reading, England),
Joseph Horzempa, and Charles R Dean, and Joanna B Goldberg, and Peter Castric
March 1989, Molecular & general genetics : MGG,
Copied contents to your clipboard!