NG-nitro-L-arginine inhibits non-adrenergic, non-cholinergic relaxation in rabbit urethral smooth muscle. 1991

S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
Section of Urology, Yale University School of Medicine, New Haven, Connecticut 06510.

Electrical field stimulation induced a relaxation response in female rabbit urethral smooth muscle strips precontracted with phenylephrine. The relaxation response was inhibited by tetrodotoxin, but not by atropine, propranolol, or hexamethonium. The relaxation response thus results from stimulation of inhibitory non-adrenergic, non-cholinergic nerves. The electrically induced relaxation response was inhibited by an inhibitor of nitric oxide biosynthesis, NG-nitro-L-arginine. This inhibition was overcome by addition of a precursor of nitric oxide, L-arginine. An inhibitor of soluble guanylate cyclase, methylene blue, reduced the relaxation response, and a selective cyclic GMP phosphodiesterase inhibitor, M & B 22948, potentiated the relaxation response. These data indicate that agents which affect the biosynthesis of nitric oxide are associated with the urethral relaxation response evoked by electrical field stimulation, and that cyclic GMP may mediate the relaxation response.

UI MeSH Term Description Entries
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber

Related Publications

S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
August 1990, British journal of pharmacology,
S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
March 1991, Acta physiologica Scandinavica,
S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
March 1990, British journal of pharmacology,
S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
August 1991, British journal of pharmacology,
S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
May 1992, British journal of pharmacology,
S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
February 1994, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
December 1991, Japanese journal of pharmacology,
S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
September 1993, Neuroreport,
S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
September 1991, European journal of pharmacology,
S Dokita, and W R Morgan, and M A Wheeler, and M Yoshida, and J Latifpour, and R M Weiss
May 1992, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
Copied contents to your clipboard!