Trypanosoma brucei glycosomal ABC transporters: identification and membrane targeting. 2006

Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium.

Trypanosomes contain unique peroxisome-like organelles designated glycosomes which sequester enzymes involved in a variety of metabolic processes including glycolysis. We identified three ABC transporters associated with the glycosomal membrane of Trypanosoma brucei. They were designated GAT1-3 for Glycosomal ABC Transporters. These polypeptides are so-called half-ABC transporters containing only one transmembrane domain and a single nucleotide-binding domain, like their homologues of mammalian and yeast peroxisomes. The glycosomal localization was shown by immunofluorescence microscopy of trypanosomes expressing fusion constructs of the transporters with Green Fluorescent Protein. By expression of fluorescent deletion constructs, the glycosome-targeting determinant of two transporters was mapped to different fragments of their respective primary structures. Interestingly, these fragments share a short sequence motif and contain adjacent to it one--but not the same--of the predicted six transmembrane segments of the transmembrane domain. We also identified the T. brucei homologue of peroxin PEX19, which is considered to act as a chaperonin and/or receptor for cytosolically synthesized proteins destined for insertion into the peroxisomal membrane. By using a bacterial two-hybrid system, it was shown that glycosomal ABC transporter fragments containing an organelle-targeting determinant can interact with both the trypanosomatid and human PEX19, despite their low overall sequence identity. Mutated forms of human PEX19 that lost interaction with human peroxisomal membrane proteins also did not bind anymore to the T. brucei glycosomal transporter. Moreover, fragments of the glycosomal transporter were targeted to the peroxisomal membrane when expressed in mammalian cells. Together these results indicate evolutionary conservation of the glycosomal/peroxisomal membrane protein import mechanism.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014346 Trypanosoma brucei brucei A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina). Trypanosoma brucei,Trypanosoma brucei bruceus,Trypanosoma bruceus,brucei brucei, Trypanosoma,brucei, Trypanosoma brucei,bruceus, Trypanosoma,bruceus, Trypanosoma brucei

Related Publications

Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
March 2011, International journal for parasitology,
Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
August 1987, Molecular and biochemical parasitology,
Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
January 1997, Experimental parasitology,
Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
April 2012, International journal for parasitology,
Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
April 1987, Journal of molecular biology,
Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
February 2007, Molecular and biochemical parasitology,
Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
January 2024, Journal of visualized experiments : JoVE,
Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
January 1998, Parasitology research,
Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
October 1998, Molecular and biochemical parasitology,
Cédric Yernaux, and Marc Fransen, and Chantal Brees, and Stephan Lorenzen, and Paul A M Michels
July 1995, Acta crystallographica. Section D, Biological crystallography,
Copied contents to your clipboard!