Biphasic effects of atropine on sensory-evoked hippocampal rhythmical slow activity in urethane-anaesthetized rats. 2006

G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
Department of Pharmacology, Faculty of Medicine, National University of Singapore, Singapore.

This study investigated the response of hippocampal RSA, recorded from electrodes in CA1 and the contralateral dentate gyrus of urethane-anaesthetized rats, to atropine sulphate administered at 15 min intervals in a cumulative dose-response schedule (1, 3, 10, 50 and 50 mg x kg(-1) i.p.). The power of CA1 and dentate gyrus RSA in the 3-7 Hz band was increased after administering the first 3 doses of atropine (1, 3 and 10 mg x kg(-1) cumulatively) in rats held in the stereotaxic frame or removed from the frame and given electrical sensory stimulation to the base of the tail. This increase in RSA was dependent on sensory input, since it was not seen in animals outside the frame unless sensory stimulation was given, and it was abolished by increasing the dose of atropine (an additional 50 and 50 mg x kg(-1) cumulatively). Methylatropine (6 mg x kg(-1) i.p.) did not increase RSA power. The biphasic effect of atropine on sensory-evoked hippocampal RSA activity may be explained by differential effects at pre- and post-synaptic sites e.g. in the septo-hippocampal system or on pathways processing sensory information.

UI MeSH Term Description Entries
D008297 Male Males
D004567 Electrodes, Implanted Surgically placed electric conductors through which ELECTRIC STIMULATION is delivered to or electrical activity is recorded from a specific point inside the body. Implantable Electrodes,Implantable Stimulation Electrodes,Implanted Electrodes,Implanted Stimulation Electrodes,Electrode, Implantable,Electrode, Implantable Stimulation,Electrode, Implanted,Electrode, Implanted Stimulation,Electrodes, Implantable,Electrodes, Implantable Stimulation,Electrodes, Implanted Stimulation,Implantable Electrode,Implantable Stimulation Electrode,Implanted Electrode,Implanted Stimulation Electrode,Stimulation Electrode, Implantable,Stimulation Electrode, Implanted,Stimulation Electrodes, Implantable,Stimulation Electrodes, Implanted
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine
D013826 Theta Rhythm Brain waves characterized by a frequency of 4-7 Hz, usually observed in the temporal lobes when the individual is awake, but relaxed and sleepy. Rhythm, Theta,Rhythms, Theta,Theta Rhythms
D014520 Urethane Antineoplastic agent that is also used as a veterinary anesthetic. It has also been used as an intermediate in organic synthesis. Urethane is suspected to be a carcinogen. Ethyl Carbamate,Urethan,Carbamate, Ethyl
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
October 1987, Brain research,
G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
July 1994, Neuropharmacology,
G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
October 1990, The Indian journal of medical research,
G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
December 1994, Hippocampus,
G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
October 1975, Experimental neurology,
G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
October 1994, Neuroreport,
G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
November 1985, Brain research,
G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
November 1991, Neuroreport,
G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
February 1995, Neuroscience research,
G S Dawe, and V A Markevich, and M Zarei, and G A Grigoryan, and J D Stephenson
January 1991, Psychopharmacology,
Copied contents to your clipboard!