Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. 2006

Jeremiah F Roeth, and Kathleen L Collins
Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA.

The Nef protein of primate lentiviruses is a unique protein that has evolved in several ways to manipulate the biology of an infected cell to support viral replication, immune evasion, pathogenesis, and viral spread. Nef is a small (25- to 34-kDa), myristoylated protein that binds to a collection of cellular factors and acts as an adaptor to generate novel protein interactions to accomplish specific functions. Of the many biological activities attributed to Nef, the reduction of surface levels of the viral receptor (CD4) and antigen-presenting molecules (major histocompatibility complex class I) has been intensely examined; recent evidence demonstrates that Nef utilizes multiple, distinct pathways to affect these proteins. To accomplish this, Nef promotes the formation of multiprotein complexes, recruiting host adaptor proteins to commandeer intracellular vesicular trafficking routes. The altered trafficking of several other host molecules has also been reported, and an emerging theory suggests that Nef generates pleiotrophic effects in the secretory and endocytic pathways that reprogram intracellular protein trafficking and may ultimately provide an efficient platform for viral assembly. This review critically discusses some of the major findings regarding the impact of human immunodeficiency virus type 1 Nef on host protein transport and addresses some emerging directions in this area of human immunodeficiency virus biology.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D005544 Forecasting The prediction or projection of the nature of future problems or existing conditions based upon the extrapolation or interpretation of existing scientific data or by the application of scientific methodology. Futurology,Projections and Predictions,Future,Predictions and Projections
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015693 Gene Products, nef Products of the retroviral NEF GENE. They play a role as accessory proteins that influence the rate of viral infectivity and the destruction of the host immune system. nef gene products were originally found as factors that trans-suppress viral replication and function as negative regulators of transcription. nef stands for negative factor. nef Gene Products,nef Protein,3'-orf Protein,Gene Product, nef,3' orf Protein,nef Gene Product
D054311 nef Gene Products, Human Immunodeficiency Virus Proteins encoded by the NEF GENES of the HUMAN IMMUNODEFICIENCY VIRUS. nef Protein, Human Immunodeficiency Virus,HIV-3'-orf Protein,nef Protein, HIV,HIV 3' orf Protein,HIV nef Protein
D021381 Protein Transport The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport. Cellular Protein Targeting,Gated Protein Transport,Protein Targeting, Cellular,Protein Translocation,Transmembrane Protein Transport,Vesicular Protein Transport,Protein Localization Processes, Cellular,Protein Sorting,Protein Trafficking,Protein Transport, Gated,Protein Transport, Transmembrane,Protein Transport, Vesicular,Traffickings, Protein
D033942 Adaptor Proteins, Vesicular Transport A class of proteins involved in the transport of molecules via TRANSPORT VESICLES. They perform functions such as binding to the cell membrane, capturing cargo molecules and promoting the assembly of CLATHRIN. The majority of adaptor proteins exist as multi-subunit complexes, however monomeric varieties have also been found. Clathrin Adaptor,Clathrin Adaptor Protein Complex,Clathrin Assembly Protein,Clathrin Assembly Protein Complex,Clathrin Assembly Proteins,Clathrin-Associated Adaptor,Clathrin-Associated Protein,Vesicular Transport Adaptor Protein,Vesicular Transport Adaptor Protein Complex,Vesicular Transport Adaptor Proteins,Adaptor Protein Complexes, Vesicular Transport,Clathrin Adaptor Protein Complexes,Clathrin Adaptors,Clathrin Assembly Protein Complexes,Clathrin-Associated Adaptors,Clathrin-Associated Proteins,Vesicular Transport Adaptor Protein Complexes,Adaptor, Clathrin,Adaptor, Clathrin-Associated,Adaptors, Clathrin,Adaptors, Clathrin-Associated,Assembly Protein, Clathrin,Assembly Proteins, Clathrin,Clathrin Associated Adaptor,Clathrin Associated Adaptors,Clathrin Associated Protein,Clathrin Associated Proteins,Protein, Clathrin Assembly,Protein, Clathrin-Associated

Related Publications

Jeremiah F Roeth, and Kathleen L Collins
January 2009, Current topics in microbiology and immunology,
Jeremiah F Roeth, and Kathleen L Collins
September 1992, Journal of virology,
Jeremiah F Roeth, and Kathleen L Collins
August 1995, Journal of virology,
Jeremiah F Roeth, and Kathleen L Collins
November 2007, Virology,
Jeremiah F Roeth, and Kathleen L Collins
October 2010, Molecular aspects of medicine,
Jeremiah F Roeth, and Kathleen L Collins
March 2001, Molecular and cellular biology,
Jeremiah F Roeth, and Kathleen L Collins
October 1999, Journal of virology,
Jeremiah F Roeth, and Kathleen L Collins
May 1996, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
Jeremiah F Roeth, and Kathleen L Collins
April 2001, Journal of virology,
Copied contents to your clipboard!